Scott Garrabrant Joint Work with Igor Pak

March 7, 2015

Scott Garrabrant The Noonan-Zeilberger Conjecture

 $A_n(\pi_1, \ldots, \pi_k; m_1, \ldots, m_k)$ is the number of $n \times n$ permutation matrices with exactly m_k instances of π_k as a (not necessarily consecutive) sub matrix.

 $A_n(\pi_1, \ldots, \pi_k; m_1, \ldots, m_k)$ is the number of $n \times n$ permutation matrices with exactly m_k instances of π_k as a (not necessarily consecutive) sub matrix.

 $\{A_n\}$ is called **P-recursive** if it satisfies a nontrivial recurrence relation of the form:

$$A_n p_0(n) + A_{n-1} p_1(n) + \ldots + A_{n-\ell} p_\ell(n) = 0$$

where each p_i is a polynomial. { A_n } is P-recursive if and only if $\sum A_n t^n$ is D-finite (holonomic). $A_n(\pi_1, \ldots, \pi_k; m_1, \ldots, m_k)$ is the number of $n \times n$ permutation matrices with exactly m_k instances of π_k as a (not necessarily consecutive) sub matrix.

 $\{A_n\}$ is called **P-recursive** if it satisfies a nontrivial recurrence relation of the form:

$$A_n p_0(n) + A_{n-1} p_1(n) + \ldots + A_{n-\ell} p_\ell(n) = 0$$

where each p_i is a polynomial. { A_n } is P-recursive if and only if $\sum A_n t^n$ is D-finite (holonomic).

e.g. $A_n(\pi;0)=\frac{1}{n+1}\binom{2n}{n}$ for any 3×3 permutation matrix π

$$\frac{1}{n+1}\binom{2n}{n}(n^2) + \frac{1}{n}\binom{2n-2}{n-1}(2-2n-4n^2) = 0$$

The Noonan-Zeilberger Conjecture (1996)

 $\{A_n(\pi_1,\ldots,\pi_k;m_1,\ldots,m_k)\}$ is always P-recursive.

A B + A B +

The Noonan-Zeilberger Conjecture (1996)

 $\{A_n(\pi_1,\ldots,\pi_k;m_1,\ldots,m_k)\}$ is always P-recursive.

Zeilberger Conjecture (2005)

 $A_n(1324;0)$ is not P-recursive.

The Noonan-Zeilberger Conjecture (1996)

 $\{A_n(\pi_1,\ldots,\pi_k;m_1,\ldots,m_k)\}$ is always P-recursive.

Zeilberger Conjecture (2005)

 $A_n(1324;0)$ is not P-recursive.

Zeilberger Quote (2015)

"I am hereby pledging a \$100 donation to the OEIS in honor of the provers or disprovers [of the Noonan-Zeilberger Conjecture]."

The Noonan-Zeilberger Conjecture (1996)

 $\{A_n(\pi_1,\ldots,\pi_k;m_1,\ldots,m_k)\}$ is always P-recursive.

Zeilberger Conjecture (2005)

 $A_n(1324;0)$ is not P-recursive.

Zeilberger Quote (2015)

"I am hereby pledging a \$100 donation to the OEIS in honor of the provers or disprovers [of the Noonan-Zeilberger Conjecture]."

Theorem (G., Pak 2015+)

The Noonan-Zeilberger conjecture is false. There exists a list of patterns π_1, \ldots, π_k of dimension at most 248×248 such that $A_n(\pi_1, \ldots, \pi_k; 0, \ldots, 0)$ is not P-recursive.

The Noonan-Zeilberger Conjecture is False

Key Ideas:

- Do everything mod 2.
- Use an involution to require that every instance of pattern B is contained in an instance of some larger pattern A.
- Simulate an automaton using pattern avoidance, inclusion exclusion, and this new involution tool.
- Show this automaton is not always well behaved mod 2.
- Show P-recursive sequences are well behaved mod 2.

The Noonan-Zeilberger Conjecture is False

Key Ideas:

- Do everything mod 2.
- Use an involution to require that every instance of pattern B is contained in an instance of some larger pattern A.
- Simulate an automaton using pattern avoidance, inclusion exclusion, and this new involution tool.
- Show this automaton is not always well behaved mod 2.
- Show P-recursive sequences are well behaved mod 2.

Lemma (G., Pak 2015+)

Let $\{a_n\}$ be a P-recursive integer sequence. Consider an infinite binary word $\mathbf{w} = w_1 w_2 \dots$ defined by $w_n = a_n \mod 2$. Then, there exists a finite binary word which is not a subword of w.

Two Stack Automata

- Finite directed graph Γ , vertices labeled x_i , y_i , x_i^{-1} , y_i^{-1} , ε .
- Traverse paths, keeping two stacks, w_X and w_Y .
- x_i : push x_i onto w_X .
- x_i^{-1} : pop x_i off of w_X .
- w_Y is similar.
- Valid paths end with both stacks empty.
- $G(\Gamma, n)$ is number of valid paths of length n from v_1 to v_2 .

Lemma (G., Pak 2015+)

There exists a two stack automaton Γ , such that the word, $w_1w_2...$ given by $w_n = G(\Gamma, n)$ is an infinite binary word which contains every finite binary word as a subword.

Simulating Two Stack Automata

T.

/	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	• \
	0	P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ŝ	0	0	0	0	0	0	T_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	в	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	0	0	0
	0	0	0	0	0	0	_	_	_	_	T	_	_	_	_	_	_	_	_	_	_	_	_	41	0	0	0	0	0
	0	0	0	0	0		0	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
	0	0	0	в	0		0	0	0	0	0	0	0	0	~	0	0	0	0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0	0	-	-	-	-	T	z_2	0	0	0	0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0		0	0	0	0	T_3		0	0	0	0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		В	0		0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0		0	0	0	-	-	0	-	_	Z_1	0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0		0	0		0	0		0	T_6		0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0		B	0		0	0		0	0		0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0	Z_2	-	-	0	-	-	0	0	0		0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	T_4	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0	0	0	0		B	0	0	0	0		0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0	0	0	0	Z_1	-	-	-	-	-	0	0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	T_2		0	0	0	0	0
	0	0	0	0	0		0	0	0	0	0	0	0	0	0	B	0	0	0	0	0	0	0		0	0	0	0	0
	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	E	0	0		0	0	0	0	0
	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	T_4	0	0	0
	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	B	0	0	0	0		0	0	0	0	0
	0	0	0	0	0	Z_1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	—	—	-	ò	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	T_2
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	B	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	E	2	0
(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	° D	0	0	Q	0
•	()	()	()		0	0	 1 	()	0	()	0	0								0	0	()		0	~		0	()	(1) /

Each entry is actually a 31×31 matrix

Simulating Two Stack Automata

We want to ensure that every B is the \star in a matrix like:

We make B and B' mostly interchangeable but forbid matrices like:

The desired matrices are the fixed points of an involution swapping B and B' whenever possible.

Lemma (G., Pak 2015+)

Let Γ be a two stack automaton. There exist integers c and d and two lists π_1, \ldots, π_k and $\pi'_1, \ldots, \pi'_{k'}$, such that

 $A_{cn+d}(\pi_1, \dots, \pi_k; 0, \dots, 0) - A_{cn+d}(\pi'_1, \dots, \pi'_{k'}; 0, \dots, 0) = G(\Gamma, n)$

modulo 2.

Lemma (G., Pak 2015+)

Let Γ be a two stack automaton. There exist integers c and d and two lists π_1, \ldots, π_k and $\pi'_1, \ldots, \pi'_{k'}$, such that

 $A_{cn+d}(\pi_1, \dots, \pi_k; 0, \dots, 0) - A_{cn+d}(\pi'_1, \dots, \pi'_{k'}; 0, \dots, 0) = G(\Gamma, n)$

modulo 2.

Lemma (G., Pak 2015+)

There exists a two stack automaton Γ , such that the word, $w_1w_2...$ given by $w_n = G(\Gamma, n)$ is an infinite binary word which contains every finite binary word as a subword.

Lemma (G., Pak 2015+)

Let $\{a_n\}$ be a P-recursive integer sequence. Consider an infinite binary word $\mathbf{w} = w_1 w_2 \dots$ defined by $w_n = a_n \mod 2$. Then, there exists a finite binary word which is not a subword of w.

Future Work

 How many patterns does it take to construct a counter example to the Noonan-Zeilberger conjecture? Somewhere between 1 and 10⁴⁸⁸.

Future Work

- How many patterns does it take to construct a counter example to the Noonan-Zeilberger conjecture? Somewhere between 1 and 10⁴⁸⁸.
- Does {A_n(π₁,...,π_k; m₁,...,m_k)} always have a generating function satisfying an algebraic differential equation? We think no, but are still working on some details.

Future Work

- How many patterns does it take to construct a counter example to the Noonan-Zeilberger conjecture? Somewhere between 1 and 10⁴⁸⁸.
- Does {A_n(π₁,...,π_k; m₁,...,m_k)} always have a generating function satisfying an algebraic differential equation? We think no, but are still working on some details.
- Is it decidable whether or not $A_n(\pi_1, \ldots, \pi_k; m_1, \ldots, m_k) = A_n(\pi'_1, \ldots, \pi'_k; m'_1, \ldots, m'_k)$? It is not decidable if they are equal mod 2.

Scott Garrabrant Joint Work with Igor Pak

March 7, 2015

Scott Garrabrant The Noonan-Zeilberger Conjecture