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Nim

Nim:

Game played with n heaps of beans

Players alternate removing any positive number of beans from
any one heap

When all heaps are empty the next player has no moves and
loses

{x1, x2, · · · xn} is the position where pile i has xi beans

Can move from {x1, x2, · · · xn} to {y1, y2, · · · yn} if yi < xi for
a single value of i and yi = xi for all others
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Game Graphs

Game Graphs:

Possibly infinite directed graph

Vertices are positions

An edge is drawn from u to v if there is a move from u to v

If there is an edge from u to v , then v is a child of u

No loops

Starting from any given vertex, only finitely many other
vertices are reachable by any sequence of moves
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P- and N-positions

P-position: Previous player has a winning strategy

N-position: Next player has a winning strategy

Every position of an impartial combinatorial game can be
classified as either a P-position or N-position

Perfect play only requires identifying P-positions

Scott Garrabrant Cofinite Induced Subgraph Nim



P- and N-positions

P-position: Previous player has a winning strategy

N-position: Next player has a winning strategy

Every position of an impartial combinatorial game can be
classified as either a P-position or N-position

Perfect play only requires identifying P-positions

Scott Garrabrant Cofinite Induced Subgraph Nim



P- and N- positions

Every child of a P-position is an N-position

Every N-position has a P-position child

These properties uniquely define set of P- and N- positions
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Why Nim?

Sprague-Grundy Value:

Let G and H be positions of possibly different games.

G + H is game in which players can choose to move in either
G or H on each turn

{x1, · · · xn}+ {y1 · · · ym} = {x1, · · · xn, y1 · · · ym}

There exists a unique x such that G + {x} is a P-position

x is called the Sprague-Grundy value of G , or sg(G )

sg(G ) = 0 iff G is a P-position

sg(G1 + G2 + · · ·+ Gn) = sg({sg(G1), sg(G2), · · · , sg(Gn)})
This allows us to analyze sums of games by converting the
individual summands to Nim heaps!
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Solution to Nim

To compute a⊕ b:

Convert a and b to binary

Add a and b without carrying

{x1, x2, · · · xn} is a P-position iff x1 ⊕ x2 ⊕ · · · ⊕ xn = 0
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Visualizing 2-heap Nim
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Visualizing 3-heap Nim
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Cofinite Induced Subgraph Games

It is common to generalize games by restricting the available
moves.

We will be interested in restricting movement to any position
in some finite set F

This corresponds to taking a cofinite induced subgraph of the
game graph

Such games are called “Cofinite Induces Subgraph Games,” or
“CIS Games”

Allows us to determine what properties of games are
independent of the endgame
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2-Heap CIS-Nim
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3-Heap CIS-Nim
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3-Heap CIS-Nim

0 1000 2000 3000 40000

1000

2000

3000

4000

Scott Garrabrant Cofinite Induced Subgraph Nim



3-Heap CIS-Nim
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3-Heap CIS-Nim

Theorem

For any nonnegative integers x and y there is a unique z such that
{x , y , z} is a P-position. This value of z satisfies the inequality
z ≤ x + y + |F |.

Consider all positions of the form {x , y , z} with
z ≤ x + y + |F |
There are x + y + |F |+ 1 of them

At most |F | of them are in F

At most x are N-positions with P-position child, {x ′, y , z}
At most y are N-positions with P-position child, {x , y ′, z}
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A Tighter Bound

Theorem

Let c be equal to the largest element of any position in F . If
{x , y , z} is a P-position with z > 2c + |F |, then z ≤ x + y.

2c + |F | < z ≤ x + y + |F |
Either x > c or y > c

Consider the set of all points of the form {x , y , z} with
z ≤ x + y

There are x + y + 1 of them, none of which are in F

At most x are N-positions with P-position child, {x ′, y , z}
At most y are N-positions with P-position child, {x , y ′, z}
Corollary: For all n > 2c + |F |, {n, n, 0} is a P-position
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Periodicity

Theorem

For any x, there exists a p and a q such that for any y > q,
{x , y , z} is a P-position if and only if {x , y + p, z + p} is a
P-position.

Proven by induction on x

Base case is previous Corollary
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Period Two Scale Invariance

Theorem

Let π(n) denote the number of P-positions of the form {x , y , z},
with x, y , and z all less than n. For any positive integer n,

limk→∞
π(n2k )
(n2k )2 converges to a nonzero constant.
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S

Let S be the set of all ordered pairs (x , y) such that there is a
P-position of the form {x , y , z} with x > y > z

π(n) is approximately the number of (x , y) ∈ S with x < n
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A Flawed Proof
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Let y = f (x) be the curve on the lower boundary of S

f −1(x) = 2f (x)

2f (x) = f −1(x) = f (f −1(f −1(x))) = f (2f (f −1(x))) = f (2x)∫ 2n
0 x − f (x)dx = 2

∫ n
0 2x − f (2x)dx = 4

∫ n
0 x − f (x)dx

Scott Garrabrant Cofinite Induced Subgraph Nim



A Flawed Proof

0 200 400 600 800 1000 12000

200

400

600

800

1000

1200

0 200 400 600 800 1000 12000

200

400

600

800

1000

1200

Let y = f (x) be the curve on the lower boundary of S

f −1(x) = 2f (x)

2f (x) = f −1(x) = f (f −1(f −1(x))) = f (2f (f −1(x))) = f (2x)∫ 2n
0 x − f (x)dx = 2

∫ n
0 2x − f (2x)dx = 4

∫ n
0 x − f (x)dx

Scott Garrabrant Cofinite Induced Subgraph Nim



A Flawed Proof

0 200 400 600 800 1000 12000

200

400

600

800

1000

1200

0 200 400 600 800 1000 12000

200

400

600

800

1000

1200

Let y = f (x) be the curve on the lower boundary of S

f −1(x) = 2f (x)

2f (x) = f −1(x) = f (f −1(f −1(x))) = f (2f (f −1(x))) = f (2x)

∫ 2n
0 x − f (x)dx = 2

∫ n
0 2x − f (2x)dx = 4

∫ n
0 x − f (x)dx

Scott Garrabrant Cofinite Induced Subgraph Nim



A Flawed Proof

0 200 400 600 800 1000 12000

200

400

600

800

1000

1200

0 200 400 600 800 1000 12000

200

400

600

800

1000

1200

Let y = f (x) be the curve on the lower boundary of S

f −1(x) = 2f (x)

2f (x) = f −1(x) = f (f −1(f −1(x))) = f (2f (f −1(x))) = f (2x)∫ 2n
0 x − f (x)dx = 2

∫ n
0 2x − f (2x)dx = 4

∫ n
0 x − f (x)dx

Scott Garrabrant Cofinite Induced Subgraph Nim



The “Hole” in the Proof
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b(x , y) and r(x , y)

Let b(x , y) be the number of (x , y ′) ∈ S with y ′ ≤ y
Let r(x , y) be the number of (x ′, y) ∈ S with x ′ ≥ x

Lemma

For all sufficiently large n, r(n, n) + 2b(n, n) + 1 = n.
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b(x , y) and r(x , y)

Lemma

For all x > y > c, if (x , y) /∈ S then b(x , y) ≥ r(x , y).

Proof Sketch:

r(x , y) is the number of (x ′, y) ∈ S with x ′ > x

There are therefore r(x , y) P-positions of the form {x ′, y , z}
with x ′ > x > y > z .

For each of these values of z , {x , y , z} is not a P-position,
and must have a P-position child.

These P-position children must be of the form {x , y ′, z} with
y ′ < y

Each one will contribute one point of the form (x , y ′) with
y ′ ≤ y to S , contributing 1 to b(x , y)
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Sm

Sm is a set of ordered pairs (x , y) with x > y defined as follows:

For x < m: (x , y) ∈ Sm iff y ≥ x − b(x , x)

For y < m ≤ x : (x , y) ∈ Sm iff x ≤ m − r(m, y)

For y ≥ m: (x , y) ∈ Sm iff x ≤ 2y and (y , b x2c) /∈ Sm

Lemma

For any sufficiently large m, there exists a bijection φ from Sm to
Sm+1 such that if φ(x1, y1) = (x2, y2), then x1 − y1 ≥ x2 − y2 and
x1 − 2y1 ≥ x2 − 2y2.
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Completing the Proof Strategy

Theorem

Let π(n) denote the number of P-positions of the form {x , y , z},
with x, y , and z all less than n. For any positive integer n,

limk→∞
π(n2k )
(n2k )2 converges to a nonzero constant.

Assume BWOC that it does not converge
There therefore exists an open ball (p, q), such that
π(n2k )
(n2k )2 > q and π(n2k )

(n2k )2 < p, each for infinitely many values of k

Therefore, as k goes to infinity, π(n2k )
(n2k )2 will increase by q − p,

then decrease by q − p infinitely many times.

Each time π(n2k )
(n2k )2 increases by q − p, Sn2k must change by

moving enough points to account for the extra 4k(q − p)
Because points in Sm can only move in the same direction, we
can set up a potential which will eventually be depleted,
stopping us from making these movements.
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(n2k )2 increases by q − p, Sn2k must change by

moving enough points to account for the extra 4k(q − p)
Because points in Sm can only move in the same direction, we
can set up a potential which will eventually be depleted,
stopping us from making these movements.

Scott Garrabrant Cofinite Induced Subgraph Nim



Completing the Proof Strategy

Theorem

Let π(n) denote the number of P-positions of the form {x , y , z},
with x, y , and z all less than n. For any positive integer n,

limk→∞
π(n2k )
(n2k )2 converges to a nonzero constant.

Assume BWOC that it does not converge
There therefore exists an open ball (p, q), such that
π(n2k )
(n2k )2 > q and π(n2k )

(n2k )2 < p, each for infinitely many values of k

Therefore, as k goes to infinity, π(n2k )
(n2k )2 will increase by q − p,

then decrease by q − p infinitely many times.

Each time π(n2k )
(n2k )2 increases by q − p, Sn2k must change by

moving enough points to account for the extra 4k(q − p)
Because points in Sm can only move in the same direction, we
can set up a potential which will eventually be depleted,
stopping us from making these movements.

Scott Garrabrant Cofinite Induced Subgraph Nim



Completing the Proof Strategy

Theorem

Let π(n) denote the number of P-positions of the form {x , y , z},
with x, y , and z all less than n. For any positive integer n,

limk→∞
π(n2k )
(n2k )2 converges to a nonzero constant.

Assume BWOC that it does not converge
There therefore exists an open ball (p, q), such that
π(n2k )
(n2k )2 > q and π(n2k )

(n2k )2 < p, each for infinitely many values of k

Therefore, as k goes to infinity, π(n2k )
(n2k )2 will increase by q − p,

then decrease by q − p infinitely many times.

Each time π(n2k )
(n2k )2 increases by q − p, Sn2k must change by

moving enough points to account for the extra 4k(q − p)

Because points in Sm can only move in the same direction, we
can set up a potential which will eventually be depleted,
stopping us from making these movements.

Scott Garrabrant Cofinite Induced Subgraph Nim



Completing the Proof Strategy

Theorem

Let π(n) denote the number of P-positions of the form {x , y , z},
with x, y , and z all less than n. For any positive integer n,

limk→∞
π(n2k )
(n2k )2 converges to a nonzero constant.

Assume BWOC that it does not converge
There therefore exists an open ball (p, q), such that
π(n2k )
(n2k )2 > q and π(n2k )

(n2k )2 < p, each for infinitely many values of k

Therefore, as k goes to infinity, π(n2k )
(n2k )2 will increase by q − p,

then decrease by q − p infinitely many times.

Each time π(n2k )
(n2k )2 increases by q − p, Sn2k must change by

moving enough points to account for the extra 4k(q − p)
Because points in Sm can only move in the same direction, we
can set up a potential which will eventually be depleted,
stopping us from making these movements.

Scott Garrabrant Cofinite Induced Subgraph Nim



What about the Background?

0 1000 2000 3000 40000

1000

2000

3000

4000

Scott Garrabrant Cofinite Induced Subgraph Nim



What about the Background?

Scott Garrabrant Cofinite Induced Subgraph Nim



Questions?
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