Cofinite Induced Subgraph Nim

Scott Garrabrant

University of California, Los Angeles

October 4, 2012

Nim

Nim:

- Game played with *n* heaps of beans
- Players alternate removing any positive number of beans from any one heap
- When all heaps are empty the next player has no moves and loses

Nim

Nim:

- Game played with n heaps of beans
- Players alternate removing any positive number of beans from any one heap
- When all heaps are empty the next player has no moves and loses
- $\{x_1, x_2, \dots x_n\}$ is the position where pile *i* has x_i beans
- Can move from $\{x_1, x_2, \cdots x_n\}$ to $\{y_1, y_2, \cdots y_n\}$ if $y_i < x_i$ for a single value of i and $y_i = x_i$ for all others

Game Graphs

Game Graphs:

- Possibly infinite directed graph
- Vertices are positions

Game Graphs

Game Graphs:

- Possibly infinite directed graph
- Vertices are positions
- An edge is drawn from u to v if there is a move from u to v
- If there is an edge from u to v, then v is a child of u

Game Graphs

Game Graphs:

- Possibly infinite directed graph
- Vertices are positions
- An edge is drawn from u to v if there is a move from u to v
- If there is an edge from u to v, then v is a child of u
- No loops
- Starting from any given vertex, only finitely many other vertices are reachable by any sequence of moves

P- and N-positions

- P-position: Previous player has a winning strategy
- N-position: Next player has a winning strategy
- Every position of an impartial combinatorial game can be classified as either a P-position or N-position

P- and N-positions

- P-position: Previous player has a winning strategy
- N-position: Next player has a winning strategy
- Every position of an impartial combinatorial game can be classified as either a P-position or N-position
- Perfect play only requires identifying *P*-positions

P- and *N*- positions

• Every child of a P-position is an N-position

P- and N- positions

- Every child of a P-position is an N-position
- Every N-position has a P-position child

P- and *N*- positions

- Every child of a *P*-position is an *N*-position
- Every N-position has a P-position child
- These properties uniquely define set of *P* and *N* positions

Why Nim?

Sprague-Grundy Value:

- Let G and H be positions of possibly different games.
- G + H is game in which players can choose to move in either
 G or H on each turn
- $\{x_1, \dots x_n\} + \{y_1 \dots y_m\} = \{x_1, \dots x_n, y_1 \dots y_m\}$

Why Nim?

Sprague-Grundy Value:

- Let G and H be positions of possibly different games.
- G + H is game in which players can choose to move in either
 G or H on each turn
- $\{x_1, \dots x_n\} + \{y_1 \dots y_m\} = \{x_1, \dots x_n, y_1 \dots y_m\}$
- There exists a unique x such that $G + \{x\}$ is a P-position
- x is called the Sprague-Grundy value of G, or sg(G)

Why Nim?

Sprague-Grundy Value:

- Let G and H be positions of possibly different games.
- G + H is game in which players can choose to move in either
 G or H on each turn
- $\{x_1, \dots x_n\} + \{y_1 \dots y_m\} = \{x_1, \dots x_n, y_1 \dots y_m\}$
- There exists a unique x such that $G + \{x\}$ is a P-position
- x is called the Sprague-Grundy value of G, or sg(G)
- sg(G) = 0 iff G is a P-position
- $sg(G_1 + G_2 + \cdots + G_n) = sg(\{sg(G_1), sg(G_2), \cdots, sg(G_n)\})$
- This allows us to analyze sums of games by converting the individual summands to Nim heaps!

Solution to Nim

To compute $a \oplus b$:

- Convert a and b to binary
- Add a and b without carrying

Solution to Nim

To compute $a \oplus b$:

- Convert a and b to binary
- Add a and b without carrying

$$\{x_1, x_2, \dots x_n\}$$
 is a *P*-position iff $x_1 \oplus x_2 \oplus \dots \oplus x_n = 0$

Visualizing 2-heap Nim

Visualizing $\overline{3}$ -heap Nim

Cofinite Induced Subgraph Games

- It is common to generalize games by restricting the available moves.
- We will be interested in restricting movement to any position in some finite set F

Cofinite Induced Subgraph Games

- It is common to generalize games by restricting the available moves.
- We will be interested in restricting movement to any position in some finite set F
- This corresponds to taking a cofinite induced subgraph of the game graph
- Such games are called "Cofinite Induces Subgraph Games," or "CIS Games"
- Allows us to determine what properties of games are independent of the endgame

Theorem

For any nonnegative integers x and y there is a unique z such that $\{x, y, z\}$ is a P-position. This value of z satisfies the inequality $z \le x + y + |F|$.

Theorem

For any nonnegative integers x and y there is a unique z such that $\{x, y, z\}$ is a P-position. This value of z satisfies the inequality $z \le x + y + |F|$.

- Consider all positions of the form $\{x, y, z\}$ with $z \le x + y + |F|$
- There are x + y + |F| + 1 of them

$\mathsf{Theorem}$

For any nonnegative integers x and y there is a unique z such that $\{x, y, z\}$ is a P-position. This value of z satisfies the inequality $z \le x + y + |F|$.

- Consider all positions of the form $\{x, y, z\}$ with $z \le x + y + |F|$
- There are x + y + |F| + 1 of them
- At most |F| of them are in F
- At most x are N-positions with P-position child, $\{x', y, z\}$
- At most y are N-positions with P-position child, $\{x, y', z\}$

Theorem

Theorem

- $2c + |F| < z \le x + y + |F|$
- Either x > c or y > c

Theorem

- $2c + |F| < z \le x + y + |F|$
- Either x > c or y > c
- Consider the set of all points of the form $\{x, y, z\}$ with $z \le x + y$
- There are x + y + 1 of them, none of which are in F

Theorem

- $2c + |F| < z \le x + y + |F|$
- Either x > c or y > c
- Consider the set of all points of the form $\{x, y, z\}$ with $z \le x + y$
- There are x + y + 1 of them, none of which are in F
- At most x are N-positions with P-position child, $\{x', y, z\}$
- At most y are N-positions with P-position child, $\{x, y', z\}$

Theorem

- $2c + |F| < z \le x + y + |F|$
- Either x > c or y > c
- Consider the set of all points of the form $\{x, y, z\}$ with $z \le x + y$
- There are x + y + 1 of them, none of which are in F
- At most x are N-positions with P-position child, $\{x', y, z\}$
- At most y are N-positions with P-position child, $\{x, y', z\}$
- Corollary: For all n > 2c + |F|, $\{n, n, 0\}$ is a P-position

Periodicity

Theorem

For any x, there exists a p and a q such that for any y > q, $\{x, y, z\}$ is a P-position if and only if $\{x, y + p, z + p\}$ is a P-position.

Periodicity

Theorem

For any x, there exists a p and a q such that for any y > q, $\{x, y, z\}$ is a P-position if and only if $\{x, y + p, z + p\}$ is a P-position.

- Proven by induction on x
- Base case is previous Corollary

Period Two Scale Invariance

Theorem

Let $\pi(n)$ denote the number of P-positions of the form $\{x, y, z\}$, with x, y, and z all less than n. For any positive integer n, $\lim_{k\to\infty}\frac{\pi(n2^k)}{(n2^k)^2}$ converges to a nonzero constant.

- Let S be the set of all ordered pairs (x, y) such that there is a P-position of the form $\{x, y, z\}$ with x > y > z
- $\pi(n)$ is approximately the number of $(x, y) \in S$ with x < n

- Let S be the set of all ordered pairs (x, y) such that there is a P-position of the form $\{x, y, z\}$ with x > y > z
- $\pi(n)$ is approximately the number of $(x, y) \in S$ with x < n

- Let S be the set of all ordered pairs (x, y) such that there is a P-position of the form $\{x, y, z\}$ with x > y > z
- $\pi(n)$ is approximately the number of $(x, y) \in S$ with x < n

• Let y = f(x) be the curve on the lower boundary of S

- Let y = f(x) be the curve on the lower boundary of S
- $f^{-1}(x) = 2f(x)$

- Let y = f(x) be the curve on the lower boundary of S
- $f^{-1}(x) = 2f(x)$
- $2f(x) = f^{-1}(x) = f(f^{-1}(f^{-1}(x))) = f(2f(f^{-1}(x))) = f(2x)$

- Let y = f(x) be the curve on the lower boundary of S
- $f^{-1}(x) = 2f(x)$
- $2f(x) = f^{-1}(x) = f(f^{-1}(f^{-1}(x))) = f(2f(f^{-1}(x))) = f(2x)$
- $\int_0^{2n} x f(x) dx = 2 \int_0^n 2x f(2x) dx = 4 \int_0^n x f(x) dx$

The "Hole" in the Proof

- Let b(x, y) be the number of $(x, y') \in S$ with $y' \le y$
- Let r(x, y) be the number of $(x', y) \in S$ with $x' \ge x$

- Let b(x, y) be the number of $(x, y') \in S$ with $y' \le y$
- Let r(x, y) be the number of $(x', y) \in S$ with $x' \ge x$

Lemma

For all sufficiently large n, r(n, n) + 2b(n, n) + 1 = n.

- Let b(x, y) be the number of $(x, y') \in S$ with $y' \le y$
- Let r(x, y) be the number of $(x', y) \in S$ with $x' \ge x$

Lemma

For all sufficiently large n, r(n, n) + 2b(n, n) + 1 = n.

Lemma

For all x > y > c, if $(x, y) \notin S$ then $b(x, y) \ge r(x, y)$.

Lemma

For all x > y > c, if $(x, y) \notin S$ then $b(x, y) \ge r(x, y)$.

Proof Sketch:

- r(x, y) is the number of $(x', y) \in S$ with x' > x
- There are therefore r(x,y) *P*-positions of the form $\{x',y,z\}$ with x'>x>y>z.

Lemma

For all x > y > c, if $(x, y) \notin S$ then $b(x, y) \ge r(x, y)$.

Proof Sketch:

- r(x, y) is the number of $(x', y) \in S$ with x' > x
- There are therefore r(x,y) *P*-positions of the form $\{x',y,z\}$ with x'>x>y>z.
- For each of these values of z, $\{x, y, z\}$ is not a P-position, and must have a P-position child.
- These *P*-position children must be of the form $\{x,y',z\}$ with y' < y

Lemma

For all x > y > c, if $(x, y) \notin S$ then $b(x, y) \ge r(x, y)$.

Proof Sketch:

- r(x, y) is the number of $(x', y) \in S$ with x' > x
- There are therefore r(x,y) *P*-positions of the form $\{x',y,z\}$ with x'>x>y>z.
- For each of these values of z, $\{x, y, z\}$ is not a P-position, and must have a P-position child.
- These *P*-position children must be of the form $\{x, y', z\}$ with y' < y
- Each one will contribute one point of the form (x, y') with $y' \le y$ to S, contributing 1 to b(x, y)

 S_m is a set of ordered pairs (x, y) with x > y defined as follows:

• For x < m: $(x, y) \in S_m$ iff $y \ge x - b(x, x)$

 S_m is a set of ordered pairs (x, y) with x > y defined as follows:

- For x < m: $(x, y) \in S_m$ iff $y \ge x b(x, x)$
- For $y < m \le x$: $(x, y) \in S_m$ iff $x \le m r(m, y)$

 S_m is a set of ordered pairs (x, y) with x > y defined as follows:

- For x < m: $(x, y) \in S_m$ iff $y \ge x b(x, x)$
- For $y < m \le x$: $(x, y) \in S_m$ iff $x \le m r(m, y)$
- For $y \ge m$: $(x, y) \in S_m$ iff $x \le 2y$ and $(y, \lfloor \frac{x}{2} \rfloor) \notin S_m$

 S_m is a set of ordered pairs (x, y) with x > y defined as follows:

- For x < m: $(x, y) \in S_m$ iff $y \ge x b(x, x)$
- For $y < m \le x$: $(x, y) \in S_m$ iff $x \le m r(m, y)$
- For $y \ge m$: $(x, y) \in S_m$ iff $x \le 2y$ and $(y, \lfloor \frac{x}{2} \rfloor) \notin S_m$

Lemma

For any sufficiently large m, there exists a bijection ϕ from S_m to S_{m+1} such that if $\phi(x_1, y_1) = (x_2, y_2)$, then $x_1 - y_1 \ge x_2 - y_2$ and $x_1 - 2y_1 \ge x_2 - 2y_2$.

Theorem

Theorem

- Assume BWOC that it does not converge
- There therefore exists an open ball (p,q), such that $\frac{\pi(n2^k)}{(n2^k)^2} > q$ and $\frac{\pi(n2^k)}{(n2^k)^2} < p$, each for infinitely many values of k

Theorem

- Assume BWOC that it does not converge
- There therefore exists an open ball (p,q), such that $\frac{\pi(n2^k)}{(n2^k)^2} > q$ and $\frac{\pi(n2^k)}{(n2^k)^2} < p$, each for infinitely many values of k
- Therefore, as k goes to infinity, $\frac{\pi(n2^k)}{(n2^k)^2}$ will increase by q-p, then decrease by q-p infinitely many times.

Theorem

- Assume BWOC that it does not converge
- There therefore exists an open ball (p,q), such that $\frac{\pi(n2^k)}{(n2^k)^2} > q$ and $\frac{\pi(n2^k)}{(n2^k)^2} < p$, each for infinitely many values of k
- Therefore, as k goes to infinity, $\frac{\pi(n2^k)}{(n2^k)^2}$ will increase by q-p, then decrease by q-p infinitely many times.
- Each time $\frac{\pi(n2^k)}{(n2^k)^2}$ increases by q-p, S_{n2^k} must change by moving enough points to account for the extra $4^k(q-p)$

Theorem

- Assume BWOC that it does not converge
- There therefore exists an open ball (p,q), such that $\frac{\pi(n2^k)}{(n2^k)^2} > q$ and $\frac{\pi(n2^k)}{(n2^k)^2} < p$, each for infinitely many values of k
- Therefore, as k goes to infinity, $\frac{\pi(n2^k)}{(n2^k)^2}$ will increase by q-p, then decrease by q-p infinitely many times.
- Each time $\frac{\pi(n2^k)}{(n2^k)^2}$ increases by q-p, S_{n2^k} must change by moving enough points to account for the extra $4^k(q-p)$
- Because points in S_m can only move in the same direction, we can set up a potential which will eventually be depleted, stopping us from making these movements.

What about the Background?

What about the Background?

Questions?

