Cofinite Induced Subgraph Nim

Scott Garrabrant

University of California, Los Angeles
October 4, 2012

Nim:

- Game played with n heaps of beans
- Players alternate removing any positive number of beans from any one heap
- When all heaps are empty the next player has no moves and loses

Nim:

- Game played with n heaps of beans
- Players alternate removing any positive number of beans from any one heap
- When all heaps are empty the next player has no moves and loses
- $\left\{x_{1}, x_{2}, \cdots x_{n}\right\}$ is the position where pile i has x_{i} beans
- Can move from $\left\{x_{1}, x_{2}, \cdots x_{n}\right\}$ to $\left\{y_{1}, y_{2}, \cdots y_{n}\right\}$ if $y_{i}<x_{i}$ for a single value of i and $y_{i}=x_{i}$ for all others

Game Graphs

Game Graphs:

- Possibly infinite directed graph
- Vertices are positions

Game Graphs

Game Graphs:

- Possibly infinite directed graph
- Vertices are positions
- An edge is drawn from u to v if there is a move from u to v
- If there is an edge from u to v, then v is a child of u

Game Graphs

Game Graphs:

- Possibly infinite directed graph
- Vertices are positions
- An edge is drawn from u to v if there is a move from u to v
- If there is an edge from u to v, then v is a child of u
- No loops
- Starting from any given vertex, only finitely many other vertices are reachable by any sequence of moves

P - and N-positions

- P-position: Previous player has a winning strategy
- N-position: Next player has a winning strategy
- Every position of an impartial combinatorial game can be classified as either a P-position or N-position

P - and N-positions

- P-position: Previous player has a winning strategy
- N-position: Next player has a winning strategy
- Every position of an impartial combinatorial game can be classified as either a P-position or N-position
- Perfect play only requires identifying P-positions

P - and N - positions

- Every child of a P-position is an N-position

P - and N - positions

- Every child of a P-position is an N-position
- Every N-position has a P-position child

P - and N - positions

- Every child of a P-position is an N-position
- Every N-position has a P-position child
- These properties uniquely define set of P - and N - positions

Why Nim?

Sprague-Grundy Value:

- Let G and H be positions of possibly different games.
- $G+H$ is game in which players can choose to move in either G or H on each turn
- $\left\{x_{1}, \cdots x_{n}\right\}+\left\{y_{1} \cdots y_{m}\right\}=\left\{x_{1}, \cdots x_{n}, y_{1} \cdots y_{m}\right\}$

Why Nim?

Sprague-Grundy Value:

- Let G and H be positions of possibly different games.
- $G+H$ is game in which players can choose to move in either G or H on each turn
- $\left\{x_{1}, \cdots x_{n}\right\}+\left\{y_{1} \cdots y_{m}\right\}=\left\{x_{1}, \cdots x_{n}, y_{1} \cdots y_{m}\right\}$
- There exists a unique x such that $G+\{x\}$ is a P-position
- x is called the Sprague-Grundy value of G, or $\operatorname{sg}(G)$

Why Nim?

Sprague-Grundy Value:

- Let G and H be positions of possibly different games.
- $G+H$ is game in which players can choose to move in either G or H on each turn
- $\left\{x_{1}, \cdots x_{n}\right\}+\left\{y_{1} \cdots y_{m}\right\}=\left\{x_{1}, \cdots x_{n}, y_{1} \cdots y_{m}\right\}$
- There exists a unique x such that $G+\{x\}$ is a P-position
- x is called the Sprague-Grundy value of G, or $\operatorname{sg}(G)$
- $\operatorname{sg}(G)=0$ iff G is a P-position
- $\operatorname{sg}\left(G_{1}+G_{2}+\cdots+G_{n}\right)=\operatorname{sg}\left(\left\{\operatorname{sg}\left(G_{1}\right), \operatorname{sg}\left(G_{2}\right), \cdots, \operatorname{sg}\left(G_{n}\right)\right\}\right)$
- This allows us to analyze sums of games by converting the individual summands to Nim heaps!

Solution to Nim

To compute $a \oplus b$:

- Convert a and b to binary
- Add a and b without carrying

Solution to Nim

To compute $a \oplus b$:

- Convert a and b to binary
- Add a and b without carrying
$\left\{x_{1}, x_{2}, \cdots x_{n}\right\}$ is a P-position iff $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}=0$

Visualizing 2-heap Nim

Visualizing 3-heap Nim

Cofinite Induced Subgraph Games

- It is common to generalize games by restricting the available moves.
- We will be interested in restricting movement to any position in some finite set F

Cofinite Induced Subgraph Games

- It is common to generalize games by restricting the available moves.
- We will be interested in restricting movement to any position in some finite set F
- This corresponds to taking a cofinite induced subgraph of the game graph
- Such games are called "Cofinite Induces Subgraph Games," or "CIS Games"
- Allows us to determine what properties of games are independent of the endgame

2-Heap CIS-Nim

3-Heap CIS-Nim

3-Heap CIS-Nim

3-Heap CIS-Nim

Scott Garrabrant
Cofinite Induced Subgraph Nim

3-Heap CIS-Nim

Theorem

For any nonnegative integers x and y there is a unique z such that $\{x, y, z\}$ is a P-position. This value of z satisfies the inequality $z \leq x+y+|F|$.

3-Heap CIS-Nim

Theorem

For any nonnegative integers x and y there is a unique z such that $\{x, y, z\}$ is a P-position. This value of z satisfies the inequality $z \leq x+y+|F|$.

- Consider all positions of the form $\{x, y, z\}$ with $z \leq x+y+|F|$
- There are $x+y+|F|+1$ of them

3-Heap CIS-Nim

Theorem

For any nonnegative integers x and y there is a unique z such that $\{x, y, z\}$ is a P-position. This value of z satisfies the inequality $z \leq x+y+|F|$.

- Consider all positions of the form $\{x, y, z\}$ with $z \leq x+y+|F|$
- There are $x+y+|F|+1$ of them
- At most $|F|$ of them are in F
- At most x are N-positions with P-position child, $\left\{x^{\prime}, y, z\right\}$
- At most y are N-positions with P-position child, $\left\{x, y^{\prime}, z\right\}$

A Tighter Bound

Theorem

Let c be equal to the largest element of any position in F. If $\{x, y, z\}$ is a P-position with $z>2 c+|F|$, then $z \leq x+y$.

A Tighter Bound

Theorem

Let c be equal to the largest element of any position in F. If $\{x, y, z\}$ is a P-position with $z>2 c+|F|$, then $z \leq x+y$.

- $2 c+|F|<z \leq x+y+|F|$
- Either $x>c$ or $y>c$

A Tighter Bound

Theorem

Let c be equal to the largest element of any position in F. If $\{x, y, z\}$ is a P-position with $z>2 c+|F|$, then $z \leq x+y$.

- $2 c+|F|<z \leq x+y+|F|$
- Either $x>c$ or $y>c$
- Consider the set of all points of the form $\{x, y, z\}$ with $z \leq x+y$
- There are $x+y+1$ of them, none of which are in F

A Tighter Bound

Theorem

Let c be equal to the largest element of any position in F. If $\{x, y, z\}$ is a P-position with $z>2 c+|F|$, then $z \leq x+y$.

- $2 c+|F|<z \leq x+y+|F|$
- Either $x>c$ or $y>c$
- Consider the set of all points of the form $\{x, y, z\}$ with

$$
z \leq x+y
$$

- There are $x+y+1$ of them, none of which are in F
- At most x are N-positions with P-position child, $\left\{x^{\prime}, y, z\right\}$
- At most y are N-positions with P-position child, $\left\{x, y^{\prime}, z\right\}$

A Tighter Bound

Theorem

Let c be equal to the largest element of any position in F. If $\{x, y, z\}$ is a P-position with $z>2 c+|F|$, then $z \leq x+y$.

- $2 c+|F|<z \leq x+y+|F|$
- Either $x>c$ or $y>c$
- Consider the set of all points of the form $\{x, y, z\}$ with

$$
z \leq x+y
$$

- There are $x+y+1$ of them, none of which are in F
- At most x are N-positions with P-position child, $\left\{x^{\prime}, y, z\right\}$
- At most y are N-positions with P-position child, $\left\{x, y^{\prime}, z\right\}$
- Corollary: For all $n>2 c+|F|,\{n, n, 0\}$ is a P-position

Periodicity

Theorem

For any x, there exists a p and a q such that for any $y>q$, $\{x, y, z\}$ is a P-position if and only if $\{x, y+p, z+p\}$ is a P-position.

Periodicity

Theorem

For any x, there exists a p and a q such that for any $y>q$, $\{x, y, z\}$ is a P-position if and only if $\{x, y+p, z+p\}$ is a P-position.

- Proven by induction on x
- Base case is previous Corollary

Theorem

Let $\pi(n)$ denote the number of P-positions of the form $\{x, y, z\}$, with x, y, and z all less than n. For any positive integer n, $\lim _{k \rightarrow \infty} \frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ converges to a nonzero constant.

- Let S be the set of all ordered pairs (x, y) such that there is a P-position of the form $\{x, y, z\}$ with $x>y>z$
- $\pi(n)$ is approximately the number of $(x, y) \in S$ with $x<n$
- Let S be the set of all ordered pairs (x, y) such that there is a P-position of the form $\{x, y, z\}$ with $x>y>z$
- $\pi(n)$ is approximately the number of $(x, y) \in S$ with $x<n$

- Let S be the set of all ordered pairs (x, y) such that there is a P-position of the form $\{x, y, z\}$ with $x>y>z$
- $\pi(n)$ is approximately the number of $(x, y) \in S$ with $x<n$

A Flawed Proof

- Let $y=f(x)$ be the curve on the lower boundary of S

A Flawed Proof

- Let $y=f(x)$ be the curve on the lower boundary of S
- $f^{-1}(x)=2 f(x)$

A Flawed Proof

- Let $y=f(x)$ be the curve on the lower boundary of S
- $f^{-1}(x)=2 f(x)$
- $2 f(x)=f^{-1}(x)=f\left(f^{-1}\left(f^{-1}(x)\right)\right)=f\left(2 f\left(f^{-1}(x)\right)\right)=f(2 x)$

A Flawed Proof

- Let $y=f(x)$ be the curve on the lower boundary of S
- $f^{-1}(x)=2 f(x)$
- $2 f(x)=f^{-1}(x)=f\left(f^{-1}\left(f^{-1}(x)\right)\right)=f\left(2 f\left(f^{-1}(x)\right)\right)=f(2 x)$
- $\int_{0}^{2 n} x-f(x) d x=2 \int_{0}^{n} 2 x-f(2 x) d x=4 \int_{0}^{n} x-f(x) d x$

The "Hole" in the Proof

$b(x, y)$ and $r(x, y)$

- Let $b(x, y)$ be the number of $\left(x, y^{\prime}\right) \in S$ with $y^{\prime} \leq y$
- Let $r(x, y)$ be the number of $\left(x^{\prime}, y\right) \in S$ with $x^{\prime} \geq x$

$b(x, y)$ and $r(x, y)$

- Let $b(x, y)$ be the number of $\left(x, y^{\prime}\right) \in S$ with $y^{\prime} \leq y$
- Let $r(x, y)$ be the number of $\left(x^{\prime}, y\right) \in S$ with $x^{\prime} \geq x$

Lemma

For all sufficiently large $n, r(n, n)+2 b(n, n)+1=n$.

$b(x, y)$ and $r(x, y)$

- Let $b(x, y)$ be the number of $\left(x, y^{\prime}\right) \in S$ with $y^{\prime} \leq y$
- Let $r(x, y)$ be the number of $\left(x^{\prime}, y\right) \in S$ with $x^{\prime} \geq x$

Lemma

For all sufficiently large $n, r(n, n)+2 b(n, n)+1=n$.

$b(x, y)$ and $r(x, y)$

Lemma

For all $x>y>c$, if $(x, y) \notin S$ then $b(x, y) \geq r(x, y)$.

$b(x, y)$ and $r(x, y)$

Lemma

For all $x>y>c$, if $(x, y) \notin S$ then $b(x, y) \geq r(x, y)$.
Proof Sketch:

- $r(x, y)$ is the number of $\left(x^{\prime}, y\right) \in S$ with $x^{\prime}>x$
- There are therefore $r(x, y) P$-positions of the form $\left\{x^{\prime}, y, z\right\}$ with $x^{\prime}>x>y>z$.

$b(x, y)$ and $r(x, y)$

Lemma

For all $x>y>c$, if $(x, y) \notin S$ then $b(x, y) \geq r(x, y)$.
Proof Sketch:

- $r(x, y)$ is the number of $\left(x^{\prime}, y\right) \in S$ with $x^{\prime}>x$
- There are therefore $r(x, y) P$-positions of the form $\left\{x^{\prime}, y, z\right\}$ with $x^{\prime}>x>y>z$.
- For each of these values of $z,\{x, y, z\}$ is not a P-position, and must have a P-position child.
- These P-position children must be of the form $\left\{x, y^{\prime}, z\right\}$ with $y^{\prime}<y$

$b(x, y)$ and $r(x, y)$

Lemma

For all $x>y>c$, if $(x, y) \notin S$ then $b(x, y) \geq r(x, y)$.
Proof Sketch:

- $r(x, y)$ is the number of $\left(x^{\prime}, y\right) \in S$ with $x^{\prime}>x$
- There are therefore $r(x, y) P$-positions of the form $\left\{x^{\prime}, y, z\right\}$ with $x^{\prime}>x>y>z$.
- For each of these values of $z,\{x, y, z\}$ is not a P-position, and must have a P-position child.
- These P-position children must be of the form $\left\{x, y^{\prime}, z\right\}$ with $y^{\prime}<y$
- Each one will contribute one point of the form $\left(x, y^{\prime}\right)$ with $y^{\prime} \leq y$ to S, contributing 1 to $b(x, y)$
S_{m} is a set of ordered pairs (x, y) with $x>y$ defined as follows:
- For $x<m:(x, y) \in S_{m}$ iff $y \geq x-b(x, x)$
S_{m} is a set of ordered pairs (x, y) with $x>y$ defined as follows:
- For $x<m:(x, y) \in S_{m}$ iff $y \geq x-b(x, x)$
- For $y<m \leq x:(x, y) \in S_{m}$ iff $x \leq m-r(m, y)$
S_{m} is a set of ordered pairs (x, y) with $x>y$ defined as follows:
- For $x<m:(x, y) \in S_{m}$ iff $y \geq x-b(x, x)$
- For $y<m \leq x:(x, y) \in S_{m}$ iff $x \leq m-r(m, y)$
- For $y \geq m:(x, y) \in S_{m}$ iff $x \leq 2 y$ and $\left(y,\left\lfloor\frac{x}{2}\right\rfloor\right) \notin S_{m}$
S_{m} is a set of ordered pairs (x, y) with $x>y$ defined as follows:
- For $x<m:(x, y) \in S_{m}$ iff $y \geq x-b(x, x)$
- For $y<m \leq x:(x, y) \in S_{m}$ iff $x \leq m-r(m, y)$
- For $y \geq m:(x, y) \in S_{m}$ iff $x \leq 2 y$ and $\left(y,\left\lfloor\frac{x}{2}\right\rfloor\right) \notin S_{m}$

Lemma

For any sufficiently large m, there exists a bijection ϕ from S_{m} to S_{m+1} such that if $\phi\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$, then $x_{1}-y_{1} \geq x_{2}-y_{2}$ and $x_{1}-2 y_{1} \geq x_{2}-2 y_{2}$.

Completing the Proof Strategy

Theorem

Let $\pi(n)$ denote the number of P-positions of the form $\{x, y, z\}$, with x, y, and z all less than n. For any positive integer n, $\lim _{k \rightarrow \infty} \frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ converges to a nonzero constant.

Completing the Proof Strategy

Theorem

Let $\pi(n)$ denote the number of P-positions of the form $\{x, y, z\}$, with x, y, and z all less than n. For any positive integer n, $\lim _{k \rightarrow \infty} \frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ converges to a nonzero constant.

- Assume BWOC that it does not converge
- There therefore exists an open ball (p, q), such that $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}>q$ and $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}<p$, each for infinitely many values of k

Completing the Proof Strategy

Theorem

Let $\pi(n)$ denote the number of P-positions of the form $\{x, y, z\}$, with x, y, and z all less than n. For any positive integer n, $\lim _{k \rightarrow \infty} \frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ converges to a nonzero constant.

- Assume BWOC that it does not converge
- There therefore exists an open ball (p, q), such that $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}>q$ and $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}<p$, each for infinitely many values of k
- Therefore, as k goes to infinity, $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ will increase by $q-p$, then decrease by $q-p$ infinitely many times.

Completing the Proof Strategy

Theorem

Let $\pi(n)$ denote the number of P-positions of the form $\{x, y, z\}$, with x, y, and z all less than n. For any positive integer n, $\lim _{k \rightarrow \infty} \frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ converges to a nonzero constant.

- Assume BWOC that it does not converge
- There therefore exists an open ball (p, q), such that $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}>q$ and $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}<p$, each for infinitely many values of k
- Therefore, as k goes to infinity, $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ will increase by $q-p$, then decrease by $q-p$ infinitely many times.
- Each time $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ increases by $q-p, S_{n 2^{k}}$ must change by moving enough points to account for the extra $4^{k}(q-p)$

Completing the Proof Strategy

Theorem

Let $\pi(n)$ denote the number of P-positions of the form $\{x, y, z\}$, with x, y, and z all less than n. For any positive integer n, $\lim _{k \rightarrow \infty} \frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ converges to a nonzero constant.

- Assume BWOC that it does not converge
- There therefore exists an open ball (p, q), such that $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}>q$ and $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}<p$, each for infinitely many values of k
- Therefore, as k goes to infinity, $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ will increase by $q-p$, then decrease by $q-p$ infinitely many times.
- Each time $\frac{\pi\left(n 2^{k}\right)}{\left(n 2^{k}\right)^{2}}$ increases by $q-p, S_{n 2^{k}}$ must change by moving enough points to account for the extra $4^{k}(q-p)$
- Because points in S_{m} can only move in the same direction, we can set up a potential which will eventually be depleted, stopping us from making these movements.

What about the Background?

What about the Background?

Questions?

