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Irrational Tiles

Irrational Tile – an axis-parallel polygon

T denotes a set of tiles.

CT (Γ) = the number of tilings of a region Γ by T .

Rε(n) denotes the [1× (n+ ε)] rectangle.

Main Question

Which functions “count tilings of a rectangle?”

I.e. for which functions f does f(n) = CT (Rε(n)) for some tile set
T of height 1 irrational tiles and ε ∈ R≥0?
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Example - Fibonacci Numbers

f(n) = Fn, the nth Fibonacci number.

ε = 0

Example: n = 21,Γ = [1× 21]
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Example - n

f(n) = n

ε = α

Example: n = 13,Γ = [1× (13 + α)]
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Example - n

f(n) = n

ε = α

Example: n = 13,Γ = [1× (13 + α)]
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Example - n2

f(n) = n2

ε = α+ β

Example: n = 17,Γ = [1× (17 + α+ β)]

Scott Garrabrant, Igor Pak Counting with Irrational Tiles



Example - n2

f(n) = n2

ε = α+ β

Example: n = 17,Γ = [1× (17 + α+ β)]
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Example -
(

2n
n

)
f(n) =

(
2n
n

)

ε = 0

Example: n = 5,Γ = [1× 5]
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Example - 2

f(n) = 2

ε = 2α

Example: n = 7, two tilings of Γ = [1× (7 + 2α)]
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Example - 2

f(n) = 2

ε = 2α

Example: n = 7, two tilings of Γ = [1× (7 + 2α)]
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Diagonals of Rational Generating Functions

Let G ∈ Z [[x1, . . . , xk]] be a rational generating function,
corresponding to the rational function P/Q for some
polynomials P,Q ∈ Z [x1, . . . , xk].

The diagonal of G is the function d(n) := [xn1 , . . . , x
n
k ]G.

Example:
(

2n
n

)
is the diagonal of 1

1−x1−x2
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N-Rational Generating Functions

Let the class Rk of N-rational generating functions be the smallest
set of rational generating functions which satisfies:

1 0, x1, . . . , xk ∈ Rk
2 F,G ∈ Rk =⇒ F +G,F ·G ∈ Rk
3 F ∈ Rk, [1]F = 0 =⇒ 1

1−F ∈ Rk
Generating functions in Rk have all non-negative coefficients, but
not all non-netative coefficient rational generating functions are in
Rk.
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F = D

Let F be the set of all tile counting functions

Let D be the set of all diagonals of functions in Rk.

Theorem (G., Pak 2014+)

F = D

Corollary (G., Pak 2014+)

F is closed under addition and multiplication.
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Binomial Coefficients

Notation:

1
(
n
k

)
= n!

k!(n−k)! when n ≥ k ≥ 0

2
(−1

0

)
= 1

3
(
n
k

)
= 0 otherwise.

This comes from defining
(
n
k

)
as the number of ways of dividing k

indistinguishable objects into n− k + 1 indistinguishable groups.
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Binomial Multisums

Let B denote the set of all functions f : N→ N which can be
expressed as

f(n) =
∑
v∈Zd

r∏
i=1

(
αi(v, n)

βi(v, n)

)
,

where each αi and βi is an integer coefficient affine function of v
and n. I.e. αi(v, n) = z1v1 + . . .+ zdvd + zd+1n+ zd+2, zi ∈ Z

Theorem (G., Pak 2014+)

F = D = B
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Examples

Fn =

(
n

0

)
+

(
n− 1

1

)
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(
dn/2e
bn/2c

)
=
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v∈Z

(
n− v
v

)
∼ 1√
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(
1 +
√

5

2

)n
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(
n
1

)(
n
1

)
f(n) =

∑
j,k∈Z

(
n− k
n− k

)(
7n− 7k

j

)(
4k

k

)(
3k

k

)
=
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k=0

128n−k
(

4k
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)
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4
,
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; 1;

1
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)
128n =

128n
√
π
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φ(n) =



(
n

n
4 ,n4 ,n4 ,n4

)
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4
( n−1

n−1
4 ,n−1

4 ,n−1
4 ,n−1

4

)
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( n−2
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4 ,n−2
4 ,n−2

4

)
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4

)
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π

4n
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Proof Sketch (D ⊆ F)

Given an N -rational generating function G in k variables,
construct a network with k colored edges.

The number of paths through the network using exactly ni
edges of color i for each 1 ≤ i ≤ k is equal to[
xn1

1 , . . . , xnk
k

]
G

Constructed recursively using the definition of N -rational.

Convert this network to a tile set using edges as tiles, vertices
as boundaries between tiles, and irrational areas to enforce
that there are n edges of each color.
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Proof Sketch (B ⊆ D)

Prove that there exists a linear bound on vectors v which
contribute to the sum. I.e.

f(n) =
∑
v∈Zd

r∏
i=1

(
αi(v, n)

βi(v, n)

)
=

∑
v∈Zd,

|vi|
n
≤M

r∏
i=1

(
αi(v, n)

βi(v, n)

)
,

for some M ∈ N.
Use this M to explicitly construct a generating function
representing sum over all choices of −Mn ≤ vi ≤Mn of a
product of binomial coefficients.

This construction is a large product of terms which are each
clearly N-rational.
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Proof Sketch (F ⊆ B)

Convert the tiling question to a question of cycles in a
weighted directed graph of a given weight.

Decompose a cycle into a unique list of “irreducible cycles.”

f(n) =
∑
v∈Zd

r∏
i=1

(
αi(v, n)

βi(v, n)

)
The v vector roughly represents the multiplicity of the
irreducible cycles in the decomposition

The
(αi(n,v)
βi(n,v)

)
represent choices that must be made in piecing

these irreducible cycles together into one cycle.
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Useful Corollary

Theorem (G., Pak 2014+)

If f(n) counts tilings of a rectangle, there exists m ≥ 1, such that
fk(n) = f(nm+ k), 0 ≤ k ≤ m− 1 satisfies either

fk = eΘ(n) or fk(n) = p(n),

for some polynomial p, for all sufficiently large n.

Proof uses integer points in polytopes and classical results about
Ehrhart polynomials.
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Non-examples

Corollary (G., Pak 2014+)

The following functions do NOT count tilings of a rectangle:

blog2(n)c = o(n)

b
√
nc = o(n)

σ0(n) = the number of divisors of n, σ(n) = o(n)

p(n) = the number of integer partitions of n, p(n) = eΘ(
√
n)

g(n) = the number of connected labeled graphs on n+ 1
vertices, g(n) = eΘ(n2)

This follows immediately from asymptotic arguments.
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Mysterious Example: Catalan Numbers

Conjecture (G., Pak 2014+)

The Catalan numbers, Cn = 1
n+1

(
2n
n

)
=
(

2n
n

)
−
(

2n
n+1

)
do not count

tilings of a rectangle.

Claim

Asymptotic methods will not prove the conjecture.

Theorem (G., Pak 2014+)

For every ε > 0, there exists a function f which counts tilings of a
rectangle, such that f(n)

Cn
→ λ, where 1− ε < λ < 1 + ε.
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Catalan Numbers (Proof of Theorem)

Theorem (G., Pak 2014+)

For every ε > 0, there exists a function f which counts tilings of a
rectangle, such that f(n)

Cn
→ λ, where 1− ε < λ < 1 + ε.

Sketch of Proof:
Cn ∼ 4n

n3/2
√
π
.

φ(n) =



(
n

n
4
,n
4
,n
4
,n
4

)
if n = 0 mod 4,

4
( n−1

n−1
4
,n−1

4
,n−1

4
,n−1

4

)
if n = 1 mod 4,

64
( n−2

n−2
4
,n−2

4
,n−2

4
,n−2

4

)
if n = 2 mod 4,

256
( n−3

n−3
4
,n−3

4
,n−3

4
,n−3

4

)
if n = 3 mod 4.

∼ 32

π

4n

n3/2
√
π

φ(n− i) ∼ 1
4i

32
π

4n

n3/2
√
π

for any fixed i.

Approximate π
32 as a sum of numbers of the form 1

4i
.
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n
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= Cn mod m
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Thank You!
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