Counting with Irrational Tiles

Scott Garrabrant Joint work with Igor Pak
University of California, Los Angeles

September 16, 2014

Irrational Tiles

- Irrational Tile - an axis-parallel polygon
- T denotes a set of tiles.
- $C_{T}(\Gamma)=$ the number of tilings of a region Γ by T.
- $R_{\varepsilon}(n)$ denotes the $[1 \times(n+\varepsilon)]$ rectangle.

Main Question

Which functions "count tilings of a rectangle?"
I.e. for which functions f does $f(n)=C_{T}\left(R_{\varepsilon}(n)\right)$ for some tile set T of height 1 irrational tiles and $\varepsilon \in \mathbb{R}^{\geq 0}$?

Example - Fibonacci Numbers

- $f(n)=F_{n}$, the $n^{\text {th }}$ Fibonacci number.

$$
\varepsilon=0
$$

Example - Fibonacci Numbers

- $f(n)=F_{n}$, the $n^{\text {th }}$ Fibonacci number.

$$
\varepsilon=0
$$

Example: $n=21, \Gamma=[1 \times 21]$

Example - n

- $f(n)=n$

$\varepsilon=\alpha$

Example - n

- $f(n)=n$

$\varepsilon=\alpha$

$$
\text { Example: } n=13, \Gamma=[1 \times(13+\alpha)]
$$

Example - n^{2}

- $f(n)=n^{2}$

$\varepsilon=\alpha+\beta$

Example - n^{2}

- $f(n)=n^{2}$

$\varepsilon=\alpha+\beta$
Example: $n=17, \Gamma=[1 \times(17+\alpha+\beta)]$

Example - $\binom{2 n}{n}$

- $f(n)=\binom{2 n}{n}$

$\varepsilon=0$

Example - $\binom{2 n}{n}$

- $f(n)=\binom{2 n}{n}$

$\varepsilon=0$
Example: $n=5, \Gamma=[1 \times 5]$

Example - 2

- $f(n)=2$

$\varepsilon=2 \alpha$

Example - 2

- $f(n)=2$

$\varepsilon=2 \alpha$
Example: $n=7$, two tilings of $\Gamma=[1 \times(7+2 \alpha)]$

Diagonals of Rational Generating Functions

- Let $G \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{k}\right]\right]$ be a rational generating function, corresponding to the rational function P / Q for some polynomials $P, Q \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$.
- The diagonal of G is the function $d(n):=\left[x_{1}^{n}, \ldots, x_{k}^{n}\right] G$.

Diagonals of Rational Generating Functions

- Let $G \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{k}\right]\right]$ be a rational generating function, corresponding to the rational function P / Q for some polynomials $P, Q \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$.
- The diagonal of G is the function $d(n):=\left[x_{1}^{n}, \ldots, x_{k}^{n}\right] G$.
- Example: $\binom{2 n}{n}$ is the diagonal of $\frac{1}{1-x_{1}-x_{2}}$

\mathbb{N}-Rational Generating Functions

Let the class \mathcal{R}_{k} of \mathbb{N}-rational generating functions be the smallest set of rational generating functions which satisfies:
(1) $0, x_{1}, \ldots, x_{k} \in \mathcal{R}_{k}$
(2) $F, G \in \mathcal{R}_{k} \Longrightarrow F+G, F \cdot G \in \mathcal{R}_{k}$
(3) $F \in \mathcal{R}_{k},[1] F=0 \Longrightarrow \frac{1}{1-F} \in \mathcal{R}_{k}$

Generating functions in \mathcal{R}_{k} have all non-negative coefficients, but not all non-netative coefficient rational generating functions are in \mathcal{R}_{k}.

$\mathcal{F}=\mathcal{D}$

- Let \mathcal{F} be the set of all tile counting functions
- Let \mathcal{D} be the set of all diagonals of functions in \mathcal{R}_{k}.

Theorem (G., Pak 2014+)

$$
\mathcal{F}=\mathcal{D}
$$

$\mathcal{F}=\mathcal{D}$

- Let \mathcal{F} be the set of all tile counting functions
- Let \mathcal{D} be the set of all diagonals of functions in \mathcal{R}_{k}.

Theorem (G., Pak 2014+)

$$
\mathcal{F}=\mathcal{D}
$$

Corollary (G., Pak 2014+)
\mathcal{F} is closed under addition and multiplication.

Binomial Coefficients

Notation:
(1) $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ when $n \geq k \geq 0$
(2) $\binom{-1}{0}=1$
(3) $\binom{n}{k}=0$ otherwise.

This comes from defining $\binom{n}{k}$ as the number of ways of dividing k indistinguishable objects into $n-k+1$ indistinguishable groups.

Binomial Multisums

Let \mathcal{B} denote the set of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which can be expressed as

$$
f(n)=\sum_{v \in \mathbb{Z}^{d}} \prod_{i=1}^{r}\binom{\alpha_{i}(v, n)}{\beta_{i}(v, n)}
$$

where each α_{i} and β_{i} is an integer coefficient affine function of v and n. I.e. $\alpha_{i}(v, n)=z_{1} v_{1}+\ldots+z_{d} v_{d}+z_{d+1} n+z_{d+2}, z_{i} \in \mathbb{Z}$

Binomial Multisums

Let \mathcal{B} denote the set of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which can be expressed as

$$
f(n)=\sum_{v \in \mathbb{Z}^{d}} \prod_{i=1}^{r}\binom{\alpha_{i}(v, n)}{\beta_{i}(v, n)}
$$

where each α_{i} and β_{i} is an integer coefficient affine function of v and n. I.e. $\alpha_{i}(v, n)=z_{1} v_{1}+\ldots+z_{d} v_{d}+z_{d+1} n+z_{d+2}, z_{i} \in \mathbb{Z}$

Theorem (G., Pak 2014+)

$$
\mathcal{F}=\mathcal{D}=\mathcal{B}
$$

Examples

$$
F_{n}=\binom{n}{0}+\binom{n-1}{1}+\ldots+\binom{\lceil n / 2\rceil}{\lfloor n / 2\rfloor}=\sum_{v \in \mathbb{Z}}\binom{n-v}{v} \sim \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

Examples

$$
\begin{gathered}
F_{n}=\binom{n}{0}+\binom{n-1}{1}+\ldots+\binom{\lceil n / 2\rceil}{\lfloor n / 2\rfloor}=\sum_{v \in \mathbb{Z}}\binom{n-v}{v} \sim \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n} \\
n^{2}=\binom{n}{1}\binom{n}{1}
\end{gathered}
$$

Examples

$$
\begin{gathered}
F_{n}=\binom{n}{0}+\binom{n-1}{1}+\ldots+\binom{\lceil n / 2\rceil}{\lfloor n / 2\rfloor}=\sum_{v \in \mathbb{Z}}\binom{n-v}{v} \sim \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n} \\
n^{2}=\binom{n}{1}\binom{n}{1} \\
f(n)=\sum_{j, k \in \mathbb{Z}}\binom{n-k}{n-k}\binom{7 n-7 k}{j}\binom{4 k}{k}\binom{3 k}{k}= \\
\sum_{k=0}^{n} 128^{n-k}\binom{4 k}{k, k, 2 k} \sim{ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ; \frac{1}{2}\right) 128^{n}=\frac{128^{n} \sqrt{\pi}}{\Gamma(5 / 8) \Gamma(7 / 8)}
\end{gathered}
$$

$$
\left.\begin{array}{c}
F_{n}=\binom{n}{0}+\binom{n-1}{1}+\ldots+\binom{[n / 2\rceil}{n / 2]}=\sum_{v \in \mathbb{Z}}\binom{n-v}{v} \sim \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n} \\
n^{2}=\left(\begin{array}{l}
n \\
1 \\
1
\end{array}\right) \\
1 \\
1
\end{array}\right) .
$$

Proof Sketch $(\mathcal{D} \subseteq \mathcal{F})$

- Given an N-rational generating function G in k variables, construct a network with k colored edges.
- The number of paths through the network using exactly n_{i} edges of color i for each $1 \leq i \leq k$ is equal to $\left[x_{1}^{n_{1}}, \ldots, x_{k}^{n_{k}}\right] G$
- Constructed recursively using the definition of N-rational.
- Convert this network to a tile set using edges as tiles, vertices as boundaries between tiles, and irrational areas to enforce that there are n edges of each color.
- Prove that there exists a linear bound on vectors v which contribute to the sum. I.e.

$$
f(n)=\sum_{v \in \mathbb{Z}^{d}} \prod_{i=1}^{r}\binom{\alpha_{i}(v, n)}{\beta_{i}(v, n)}=\sum_{v \in \mathbb{Z}^{d}, \frac{\left|v_{i}\right|}{n} \leq M} \prod_{i=1}^{r}\binom{\alpha_{i}(v, n)}{\beta_{i}(v, n)}
$$

for some $M \in \mathbb{N}$.

- Use this M to explicitly construct a generating function representing sum over all choices of $-M n \leq v_{i} \leq M n$ of a product of binomial coefficients.
- This construction is a large product of terms which are each clearly \mathbb{N}-rational.
- Convert the tiling question to a question of cycles in a weighted directed graph of a given weight.
- Decompose a cycle into a unique list of "irreducible cycles."
-

$$
f(n)=\sum_{v \in \mathbb{Z}^{d}} \prod_{i=1}^{r}\binom{\alpha_{i}(v, n)}{\beta_{i}(v, n)}
$$

- The v vector roughly represents the multiplicity of the irreducible cycles in the decomposition
- The $\binom{\alpha_{i}(n, v)}{\beta_{i}(n, v)}$ represent choices that must be made in piecing these irreducible cycles together into one cycle.

Useful Corollary

Theorem (G., Pak 2014+)

If $f(n)$ counts tilings of a rectangle, there exists $m \geq 1$, such that $f_{k}(n)=f(n m+k), 0 \leq k \leq m-1$ satisfies either

$$
f_{k}=e^{\Theta(n)} \quad \text { or } \quad f_{k}(n)=p(n)
$$

for some polynomial p, for all sufficiently large n.
Proof uses integer points in polytopes and classical results about Ehrhart polynomials.

Non-examples

Corollary (G., Pak 2014+)

The following functions do NOT count tilings of a rectangle:

- $\left\lfloor\log _{2}(n)\right\rfloor=o(n)$
- $\lfloor\sqrt{n}\rfloor=o(n)$
- $\sigma_{0}(n)=$ the number of divisors of $n, \sigma(n)=o(n)$
- $p(n)=$ the number of integer partitions of $n, p(n)=e^{\Theta(\sqrt{n})}$
- $g(n)=$ the number of connected labeled graphs on $n+1$ vertices, $g(n)=e^{\Theta\left(n^{2}\right)}$

This follows immediately from asymptotic arguments.

Mysterious Example: Catalan Numbers

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$ do not count tilings of a rectangle.

Mysterious Example: Catalan Numbers

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$ do not count tilings of a rectangle.

Claim

Asymptotic methods will not prove the conjecture.

Theorem (G., Pak 2014+)

For every $\varepsilon>0$, there exists a function f which counts tilings of a rectangle, such that $\frac{f(n)}{C_{n}} \rightarrow \lambda$, where $1-\varepsilon<\lambda<1+\varepsilon$.

Catalan Numbers (Proof of Theorem)

Theorem (G., Pak 2014+)

For every $\varepsilon>0$, there exists a function f which counts tilings of a rectangle, such that $\frac{f(n)}{C_{n}} \rightarrow \lambda$, where $1-\varepsilon<\lambda<1+\varepsilon$.

Sketch of Proof:

$C_{n} \sim \frac{4^{n}}{n^{3 / 2} \sqrt{\pi}}$.

$$
\phi(n)=\left\{\begin{array}{lll}
\left.\binom{n}{4} \frac{n}{4}, \frac{n}{4}, \frac{n}{4}\right) & \text { if } n=0 & \bmod 4, \\
4\left(\frac{n-1}{4}, \frac{n-1}{4}, \frac{n-1}{4}, \frac{n-1}{4}\right) & \text { if } n=1 \bmod 4, \\
64\left(\frac{n-2}{4}, \frac{n-2}{4}, \frac{n-2}{4}, \frac{n-2}{4}\right) & \text { if } n=2 \bmod 4,
\end{array} \sim \frac{32}{\pi} \frac{4^{n}}{n^{3 / 2} \sqrt{\pi}}\right.
$$

$\phi(n-i) \sim \frac{1}{4^{2}} \frac{32}{\pi} \frac{4^{n}}{n^{3 / 2} \sqrt{\pi}}$ for any fixed i.
Approximate $\frac{\pi}{32}$ as a sum of numbers of the form $\frac{1}{4^{i}}$.

Mysterious Example: Catalan Numbers

Conjecture (G., Pak 2014+)
The Catalan numbers, $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$ do not count tilings of a rectangle.

Mysterious Example: Catalan Numbers

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$ do not count tilings of a rectangle.

Claim

Arithmetic methods will not prove the conjecture.

Theorem (G., Pak 2014+)

For every natural number $m \geq 1$, there exists a function f which counts tilings of a rectangle, such that $f(n)=C_{n} \bmod m$.

Mysterious Example: Catalan Numbers

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$ do not count tilings of a rectangle.

Claim

Arithmetic methods will not prove the conjecture.

Theorem (G., Pak 2014+)

For every natural number $m \geq 1$, there exists a function f which counts tilings of a rectangle, such that $f(n)=C_{n} \bmod m$.

$$
f(n)=\binom{2 n}{n}+(m-1)\binom{2 n}{n+1}=\binom{2 n}{n}-\binom{2 n}{n+1}=C_{n} \bmod m
$$

Thank You!

