Counting with Irrational Tiles

Scott Garrabrant Joint work with Igor Pak

University of California, Los Angeles

September 16, 2014

Irrational Tiles

- Irrational Tile an axis-parallel polygon
- T denotes a set of tiles.
- $C_T(\Gamma) =$ the number of tilings of a region Γ by T.
- $R_{\varepsilon}(n)$ denotes the $[1 \times (n+\varepsilon)]$ rectangle.

Main Question

Which functions "count tilings of a rectangle?"

I.e. for which functions f does $f(n)=C_T(R_\varepsilon(n))$ for some tile set T of height 1 irrational tiles and $\varepsilon\in\mathbb{R}^{\geq 0}$?

Example - Fibonacci Numbers

• $f(n) = F_n$, the n^{th} Fibonacci number.

 $\varepsilon = 0$

Example - Fibonacci Numbers

• $f(n) = F_n$, the n^{th} Fibonacci number.

$$\varepsilon = 0$$

Example - n

•
$$f(n) = n$$

$$\varepsilon = \alpha$$

Example - n

•
$$f(n) = n$$

$$\varepsilon = \alpha$$

Example:
$$n = 13, \Gamma = [1 \times (13 + \alpha)]$$

$\overline{\mathsf{E}}$ xample - n^2

•
$$f(n) = n^2$$

$$\varepsilon = \alpha + \beta$$

Example - n^2

• $f(n) = n^2$

$$\varepsilon = \alpha + \beta$$

Example - $\binom{2n}{n}$

•
$$f(n) = \binom{2n}{n}$$

$$\varepsilon = 0$$

Example - $\binom{2n}{n}$

•
$$f(n) = \binom{2n}{n}$$

$$\varepsilon = 0$$

Example:
$$n = 5, \Gamma = [1 \times 5]$$

Example - 2

$$\varepsilon = 2\alpha$$

Example - 2

• f(n) = 2

$$\varepsilon = 2\alpha$$

Example: n=7, two tilings of $\Gamma=[1\times (7+2\alpha)]$

Diagonals of Rational Generating Functions

- Let $G \in \mathbb{Z}[[x_1, \dots, x_k]]$ be a rational generating function, corresponding to the rational function P/Q for some polynomials $P, Q \in \mathbb{Z}[x_1, \dots, x_k]$.
- The diagonal of G is the function $d(n) := [x_1^n, \dots, x_k^n] G$.

Diagonals of Rational Generating Functions

- Let $G \in \mathbb{Z}\left[[x_1,\ldots,x_k]\right]$ be a rational generating function, corresponding to the rational function P/Q for some polynomials $P,Q\in\mathbb{Z}\left[x_1,\ldots,x_k\right]$.
- The diagonal of G is the function $d(n) := [x_1^n, \dots, x_k^n] G$.
- ullet Example: $inom{2n}{n}$ is the diagonal of $rac{1}{1-x_1-x_2}$

N-Rational Generating Functions

Let the class \mathcal{R}_k of \mathbb{N} -rational generating functions be the smallest set of rational generating functions which satisfies:

- $0, x_1, \ldots, x_k \in \mathcal{R}_k$
- $P, G \in \mathcal{R}_k \implies F + G, F \cdot G \in \mathcal{R}_k$
- $\bullet F \in \mathcal{R}_k, [1]F = 0 \implies \frac{1}{1-F} \in \mathcal{R}_k$

Generating functions in \mathcal{R}_k have all non-negative coefficients, but not all non-netative coefficient rational generating functions are in \mathcal{R}_k .

$$\mathcal{F} = \mathcal{D}$$

- ullet Let ${\mathcal F}$ be the set of all tile counting functions
- Let \mathcal{D} be the set of all diagonals of functions in \mathcal{R}_k .

Theorem (G., Pak 2014+)

$$\mathcal{F} = \mathcal{D}$$

$$\mathcal{F} = \mathcal{D}$$

- ullet Let ${\mathcal F}$ be the set of all tile counting functions
- Let \mathcal{D} be the set of all diagonals of functions in \mathcal{R}_k .

Theorem (G., Pak 2014+)

$$\mathcal{F}=\mathcal{D}$$

Corollary (G., Pak 2014+)

 ${\cal F}$ is closed under addition and multiplication.

Binomial Coefficients

Notation:

- (-1) = 1
- $(n \choose k) = 0 otherwise.$

This comes from defining $\binom{n}{k}$ as the number of ways of dividing k indistinguishable objects into n-k+1 indistinguishable groups.

Binomial Multisums

Let $\mathcal B$ denote the set of all functions $f:\mathbb N\to\mathbb N$ which can be expressed as

$$f(n) = \sum_{v \in \mathbb{Z}^d} \prod_{i=1}^r \binom{\alpha_i(v,n)}{\beta_i(v,n)},$$

where each α_i and β_i is an integer coefficient affine function of v and n. I.e. $\alpha_i(v,n)=z_1v_1+\ldots+z_dv_d+z_{d+1}n+z_{d+2},z_i\in\mathbb{Z}$

Binomial Multisums

Let $\mathcal B$ denote the set of all functions $f:\mathbb N\to\mathbb N$ which can be expressed as

$$f(n) = \sum_{v \in \mathbb{Z}^d} \prod_{i=1}^r \binom{\alpha_i(v,n)}{\beta_i(v,n)},$$

where each α_i and β_i is an integer coefficient affine function of v and n. I.e. $\alpha_i(v,n)=z_1v_1+\ldots+z_dv_d+z_{d+1}n+z_{d+2},z_i\in\mathbb{Z}$

Theorem (G., Pak 2014+)

$$\mathcal{F} = \mathcal{D} = \mathcal{B}$$

$$F_n = \binom{n}{0} + \binom{n-1}{1} + \ldots + \binom{\lceil n/2 \rceil}{\lfloor n/2 \rfloor} = \sum_{v \in \mathbb{Z}} \binom{n-v}{v} \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$$

$$F_n = \binom{n}{0} + \binom{n-1}{1} + \ldots + \binom{\lceil n/2 \rceil}{\lfloor n/2 \rfloor} = \sum_{v \in \mathbb{Z}} \binom{n-v}{v} \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$$
$$n^2 = \binom{n}{1} \binom{n}{1}$$

$$F_{n} = \binom{n}{0} + \binom{n-1}{1} + \ldots + \binom{\lceil n/2 \rceil}{\lfloor n/2 \rfloor} = \sum_{v \in \mathbb{Z}} \binom{n-v}{v} \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n}$$

$$n^{2} = \binom{n}{1} \binom{n}{1}$$

$$f(n) = \sum_{j,k \in \mathbb{Z}} \binom{n-k}{n-k} \binom{7n-7k}{j} \binom{4k}{k} \binom{3k}{k} =$$

$$\sum_{j,k \in \mathbb{Z}} \binom{4k}{n-k} \sim {}_{2}F_{1} \left(\frac{1}{4}, \frac{3}{4}; 1; \frac{1}{2}\right) 128^{n} = \frac{128^{n}\sqrt{\pi}}{\Gamma(5/8)\Gamma(7/8)}$$

$$F_{n} = \binom{n}{0} + \binom{n-1}{1} + \ldots + \binom{\lceil n/2 \rceil}{\lfloor n/2 \rfloor} = \sum_{v \in \mathbb{Z}} \binom{n-v}{v} \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n}$$

$$n^{2} = \binom{n}{1} \binom{n}{1}$$

$$f(n) = \sum_{j,k \in \mathbb{Z}} \binom{n-k}{n-k} \binom{7n-7k}{j} \binom{4k}{k} \binom{3k}{k} = \sum_{k=0}^{n} 128^{n-k} \binom{4k}{k,k,2k} \sim {}_{2}F_{1} \left(\frac{1}{4}, \frac{3}{4}; 1; \frac{1}{2}\right) 128^{n} = \frac{128^{n}\sqrt{\pi}}{\Gamma(5/8)\Gamma(7/8)}$$

$$\phi(n) = \begin{cases} \binom{n}{4}, \frac{n}{4}, \frac{n}{4}, \frac{n}{4} \\ 4\binom{n-1}{4}, \frac{n-1}{4}, \frac{n-1}{4} \end{pmatrix} & \text{if } n = 0 \mod 4, \\ 4\binom{n-1}{4}, \frac{n-1}{4}, \frac{n-1}{4}, \frac{n-1}{4} \end{pmatrix} & \text{if } n = 1 \mod 4, \\ 64\binom{n-2}{4}, \frac{n-2}{4}, \frac{n-2}{4}, \frac{n-2}{4} \end{pmatrix} & \text{if } n = 2 \mod 4, \\ 256\binom{n-3}{4}, \frac{n-3}{4}, \frac{n-3}{4}, \frac{n-3}{4} \end{pmatrix} & \text{if } n = 3 \mod 4.$$

Proof Sketch $(\mathcal{D} \subseteq \mathcal{F})$

- Given an N-rational generating function G in k variables, construct a network with k colored edges.
- The number of paths through the network using exactly n_i edges of color i for each $1 \le i \le k$ is equal to $\left[x_1^{n_1}, \ldots, x_k^{n_k}\right]G$
- ullet Constructed recursively using the definition of N-rational.
- Convert this network to a tile set using edges as tiles, vertices as boundaries between tiles, and irrational areas to enforce that there are n edges of each color.

Proof Sketch ($\mathcal{B} \subseteq \mathcal{D}$)

ullet Prove that there exists a linear bound on vectors v which contribute to the sum. I.e.

$$f(n) = \sum_{v \in \mathbb{Z}^d} \prod_{i=1}^r \binom{\alpha_i(v,n)}{\beta_i(v,n)} = \sum_{v \in \mathbb{Z}^d, \frac{|v_i|}{n} \le M} \prod_{i=1}^r \binom{\alpha_i(v,n)}{\beta_i(v,n)},$$

for some $M \in \mathbb{N}$.

- Use this M to explicitly construct a generating function representing sum over all choices of $-Mn \le v_i \le Mn$ of a product of binomial coefficients.
- \bullet This construction is a large product of terms which are each clearly $\mathbb{N}\text{-rational}.$

Proof Sketch ($\mathcal{F} \subseteq \mathcal{B}$)

- Convert the tiling question to a question of cycles in a weighted directed graph of a given weight.
- Decompose a cycle into a unique list of "irreducible cycles."

•

$$f(n) = \sum_{v \in \mathbb{Z}^d} \prod_{i=1}^r \begin{pmatrix} \alpha_i(v, n) \\ \beta_i(v, n) \end{pmatrix}$$

- ullet The v vector roughly represents the multiplicity of the irreducible cycles in the decomposition
- The $\binom{\alpha_i(n,v)}{\beta_i(n,v)}$ represent choices that must be made in piecing these irreducible cycles together into one cycle.

Useful Corollary

Theorem (G., Pak 2014+)

If f(n) counts tilings of a rectangle, there exists $m \ge 1$, such that $f_k(n) = f(nm+k)$, $0 \le k \le m-1$ satisfies either

$$f_k = e^{\Theta(n)}$$
 or $f_k(n) = p(n)$,

for some polynomial p, for all sufficiently large n.

Proof uses integer points in polytopes and classical results about Ehrhart polynomials.

Non-examples

Corollary (G., Pak 2014+)

The following functions do NOT count tilings of a rectangle:

- $\lfloor \log_2(n) \rfloor = o(n)$
- $\bullet \ \lfloor \sqrt{n} \rfloor = o(n)$
- $\sigma_0(n) =$ the number of divisors of n, $\sigma(n) = o(n)$
- p(n) = the number of integer partitions of n, $p(n) = e^{\Theta(\sqrt{n})}$
- g(n)= the number of connected labeled graphs on n+1 vertices, $g(n)=e^{\Theta(n^2)}$

This follows immediately from asymptotic arguments.

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1}$ do not count tilings of a rectangle.

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1}$ do not count tilings of a rectangle.

Claim

Asymptotic methods will not prove the conjecture.

Theorem (G., Pak 2014+)

For every $\varepsilon>0$, there exists a function f which counts tilings of a rectangle, such that $\frac{f(n)}{C_n}\to\lambda$, where $1-\varepsilon<\lambda<1+\varepsilon$.

Catalan Numbers (Proof of Theorem)

Theorem (G., Pak 2014+)

For every $\varepsilon > 0$, there exists a function f which counts tilings of a rectangle, such that $\frac{f(n)}{C} \to \lambda$, where $1 - \varepsilon < \lambda < 1 + \varepsilon$.

Sketch of Proof:

$$C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}$$
.

$$\phi(n) = \begin{cases} \left(\frac{n}{4}, \frac{n}{4}, \frac{n}{4}, \frac{n}{4}\right) & \text{if } n = 0 \mod 4, \\ 4\left(\frac{n-1}{4}, \frac{n-1}{4}, \frac{n-1}{4}, \frac{n-1}{4}\right) & \text{if } n = 1 \mod 4, \\ 64\left(\frac{n-2}{4}, \frac{n-2}{4}, \frac{n-2}{4}, \frac{n-2}{4}\right) & \text{if } n = 2 \mod 4, \end{cases} \sim \frac{32}{\pi} \frac{4^n}{n^{3/2}\sqrt{\pi}}$$

$$256\left(\frac{n-3}{4}, \frac{n-3}{4}, \frac{n-3}{4}, \frac{n-3}{4}\right) & \text{if } n = 3 \mod 4.$$

 $\phi(n-i) \sim \frac{1}{4^i} \frac{32}{\pi} \frac{4^n}{n^{3/2} \sqrt{\pi}}$ for any fixed i.

Approximate $\frac{\pi}{32}$ as a sum of numbers of the form $\frac{1}{4i}$.

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1}$ do not count tilings of a rectangle.

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1}$ do not count tilings of a rectangle.

Claim

Arithmetic methods will not prove the conjecture.

Theorem (G., Pak 2014+)

For every natural number $m \ge 1$, there exists a function f which counts tilings of a rectangle, such that $f(n) = C_n \mod m$.

Conjecture (G., Pak 2014+)

The Catalan numbers, $C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1}$ do not count tilings of a rectangle.

Claim

Arithmetic methods will not prove the conjecture.

Theorem (G., Pak 2014+)

For every natural number $m \ge 1$, there exists a function f which counts tilings of a rectangle, such that $f(n) = C_n \mod m$.

$$f(n) = {2n \choose n} + (m-1){2n \choose n+1} = {2n \choose n} - {2n \choose n+1} = C_n \mod m$$

Thank You!