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Abstract

A linear extension of a poset P is a permutation of the elements of the set that respects the

partial order. Let L(P ) denote the number of linear extensions. It is a #P complete problem

to determine L(P ) exactly for an arbitrary poset, and so randomized approximation algorithms

that draw randomly from the set of linear extensions are used. In this work, the set of linear

extensions is embedded in a larger state space with a continuous parameter β. The introduction of

a continuous parameter allows for the use of a more efficient method for approximating L(P ) called

TPA. Our primary result is that it is possible to sample from this continuous embedding in time

that as fast or faster than the best known methods for sampling uniformly from linear extensions.

For a poset containing n elements, this means we can approximate L(P ) to within a factor of 1+ ǫ

with probability at least 1 − δ using an expected number of random bits and comparisons in the

poset which is at most O(n3(lnn)(lnL(P ))2ǫ−2 ln δ−1).
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MSC Classification: Primary: 65C05; 06A07

1 Introduction

Consider the set [n] = {1, . . . , n} and a partial order P = ([n],�) on this set. Then a linear

extension of the poset P is a permutation σ of [n] such that for all i < j, σ(i) � σ(j). Say
that such a permutation respects the partial order.
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Our goal here is to efficiently count the number of linear extensions, which we denote
L(P ). In general, finding L(P ) is a #P complete problem [2], and so instead of an exact
deterministic method, we develop a randomized approximation method.

There are many applications of this problem. Morton et al. [9] have shown that a par-
ticular type of convex rank test for nonparametric models can be reduced to counting linear
extensions. Many data sets such as athletic competitions or product comparisons do not
have results for every possible pairing, but instead have an incomplete set of comparisons.
Counting linear extensions can be used to develop estimates of the actual rank of the items
involved (see [3].)

Previous results Previous methods for this problem ([1, 6]) concentrated on sampling from
the set of linear extensions where some of the permutation values are fixed ahead of time.
Generating a single uniform sample from the set of linear extensions takes O(n3 lnn) expected
number of random bits, using a number of comparisons that is at most the number of random
bits [6]. Using the self-reducibility method of Jerrum et al. [8], this can be used to estimate
L(P ) to within a factor of 1+ǫ with probability at least 1−δ in time O(n5(lnn)3ǫ−2 ln(1/δ)).

Here we take a different approach. Instead of sampling uniformly from the set of permu-
tations, a weighted distribution is used that has a parameter β. The weight assigned to an el-
ement varies continuously with β, and this allows us to use a new method for turning samples
from our weighted distribution into an approximation for L(P ) called the Tootsie Pop Algo-
rithm (TPA). The use of TPA gives us an algorithm that is O((lnL(P ))2n3(lnn)ǫ−2 ln(1/δ)).
In the worse case, lnL(P ) is O(n lnn) and the complexity is the same as the older algorithm,
however, if L(P ) is small compared to n!, this algorithm can be much faster. Even in the
worst case, the constant hidden by the big-O notation is much smaller for the new algorithm
(see Theorem 4 of Section 6.)

Organization In the next section, we describe the self-reducibility method and TPA in
detail. Section 3 illustrates the use of TPA on a simple example, and then Section 4 shows
how it can be used on the linear extensions problem by adding the appropriate weighting.
Section 5 then shows how the non-Markovian coupling from the past method introduced
in [6] can also be used for this new embedding, and Section 6 collects results concerning
the running time of the procedure, including an explicit bound on the expected number of
random bits and comparisons used by the algorithm.

2 The Tootsie Pop Algorithm

In [8], Jerrum et al. noted that for self-reducible problems, an algorithm for generating from
a set could be used to build an approximation algorithm for finding the size of the set.
Informally, a problem is self-reducible if the set of solutions can be partitioned into the
solutions of smaller instances of the problem (for precise details, see [8].)

For example, in linear extensions once σ(1) is determined, the problem of drawing
σ(2), . . . , σ(n) is just a smaller linear extension generation problem.

While a theoretical tour de force, as a practical matter using self-reducibility to build
algorithms is difficult. The output of a self-reducibility algorithm is a scaled product of
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binomials, not the easiest distribution to work with or analyze precisely.
The Tootsie Pop Algorithm (TPA) [7] is one way to solve this difficulty. Roughly speaking,

TPA begins with a large set (the shell) containing a smaller set (the center). At each step,
TPA draws a sample X randomly from the shell, and reduces the shell as much as possible
while still containing X . The process then repeats, drawing samples and contracting the
shell. This continues until the sample drawn lands in the center. The number of samples
drawn before one falls in the center has a Poisson distribution, with parameter equal to the
natural logarithm of the ratio of the size of the shell to the center.

To be precise, TPA requires the following ingredients

(a) A measure space (Ω,F , µ).
(b) Two finite measurable sets B and B′ satisfying B′ ⊂ B. The set B′ is the center and

B is the shell.

(c) A family of nested sets {A(β) : β ∈ R} such that β < β ′ implies A(β) ⊆ A(β ′). Also
µ(A(β)) must be a continuous function of β, and limβ→−∞ µ(A(β)) = 0.

(d) Special values βB and βB′ that satisfy A(βB) = B and A(βB′) = B′.

With these ingredients, TPA can be run as follows.

Algorithm 2.1 TPA(r, βB, βB′)

Input: Number of runs r, initial index βB, final index βB′

Output: L̂ (estimate of µ(B)/µ(B′))
1: k ← 0
2: for i from 1 to r do

3: β ← βB, k ← k − 1
4: while β > βB′ do

5: k ← k + 1, X ← µ(A(β)), β ← inf{β ′ ∈ [βB′ , βB] : X ∈ A(β ′)}
6: end while

7: end for

8: L̂← exp(k/r)

Let A = ln(µ(B)/µ(B′)), so that exp(A) is what we are trying to estimate. Then each
run through the for loop in the algorithm requires on average A + 1 samples, making the
total expected number of samples r(A + 1). The value of k in line 7 of the algorithm is
Poisson distributed with parameter rA. This means that r should be set to about A so that
k/r is tightly concentrated around A.

But we do not know A ahead of time! This leads to the need for a two-phase algorithm.
In the first phase r is set to be large enough to get a rough approximation of A, and then in
the second phase r is set based on our estimate from the first run. That is:

1. Call TPA with r1 = 2 ln(2/δ) to obtain L̂1, and set Â1 = ln(L̂1).

2. Call TPA with r2 = 2(Â1 +
√

Â1 + 2)[ln(1 + ǫ)2 − ln(1 + ǫ)3]−1 ln(4/δ) to obtain the
final estimate.

The result is output L̂2 that is within a factor of 1+ ǫ of L(P ) with probability at least 1−δ.
This is shown in Section 6.
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3 Continuous embedding: simple example

To illustrate TPA versus the basic self-reducibility approach, consider a simple problem that
will serve as a building block for our algorithm on linear extensions later. In this problem,
we estimate the size of the set {1, 2, . . . , n} given the ability to draw samples uniformly from
{1, 2, . . . , b} for any b.

In the self-reducibility approach, begin by setting β1 = ⌈n/2⌉ and drawing samples from
{1, . . . , n}. Count how many fall into {1, . . . , β1} and use this number â1 (divided by the
number of samples) as an estimate of β1/n. Now repeat, letting β2 = ⌈β1/2⌉ and estimating
â2 = β2/β1 until βk = 1. Note that

E[â1â2 · · · âk−1] =
β1

n

β2

β1

· · · βk

βk−1

=
βk

n
.

Since the final estimate â of 1
n
is the product of k−1 estimates, Fishman called this algorithm

the product estimator [4]. The problem with analyzing the output of the product estimator,
is that it is the product of k scaled binomials.

To use TPA on this problem, it needs to be embedded in a continuous setting. Consider
the state space [0, n]. The family of sets needed for TPA will be [0, β], where βB = n and
βB′ = 1. This makes the ratio of the measure of [0, βB] to [0, βB′] equal to n.

Note that you can draw uniformly from [0, β] in the following two step fashion. First
draw X ∈ {1, 2, . . . , ⌈β⌉} so that P(X = i) = 1/β for i < β and P(X = β) = (1+β−⌈β⌉)/β.
If X < β, draw Y uniform on [0, 1], otherwise draw Y uniform on [0, 1+ β − ⌈β⌉]. The final
draw is W = X − 1 + Y .

TPA starts with β0 = n, then draws W as above. The infimum over all β such that
W ∈ [0, β] is just β = W . So β1 just equals W . Next, redraw W from [0, β1]. Again, the
infimum of β satisfying W ∈ [0, β] is just W , so β2 equals this new value of W .

This process repeats until W falls into [0, 1]. The estimate k for lnn is just the number
of steps needed before the final step into [0, 1]. Note that k can equal 0 if the very first
step lands in [0, 1]. This random variable k will be Poisson distributed with parameter lnn.
Recall that the sum of Poisson random variables is also Poisson with parameter equal to the
sum of the individual parameters, so repeating the process r times and summing the results
yields a Poisson random variable with parameter r lnn. Dividing by r and exponentiating
then yields an estimate of n.

4 Continuous embedding: linear extensions

This approach can be extended to the problem of linear extensions as follows. A permutation
can be viewed as a vector in [n]n space, where if σ(i) = j, then σ(i′) 6= j for all i′ 6= i.

In the continuous embedding, our vectors x are in (0, n]n, and if ⌈x(i)⌉ = j, then ⌈x(i′)⌉ 6=
j for all i′ 6= i. Such a vector x induces a unique permutation σ by taking the ceiling of all
its elements, moreover, the Lebesgue measure of the set of x that map to a particular σ is
always 1.

Therefore the measure of the set of x that map to linear extensions of the poset P is just
the number of linear extensions. The state space (0, n]n can be restricted in a continuous
fashion, leading to the use of TPA.
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Let σhome be any valid linear extension. For a vector x, define the distance from x to the
home position to be:

d(x, σhome) = max
i∈[n]

⌈x(i)− σhome(i)⌉.

If the distance is 0, then no element i is to the right of the home position. The only way
that can happen is if ⌈x(i)⌉ = σhome(i) for all i. Let A(β) be vectors x in (0, n]n that map
to linear extensions of P and d(x, xhome) ≤ β. Then µ(A(n)) = L(P ) and µ(A(0)) = 1.

In order to use this family for TPA, it is necessary to draw samples from A(β) for any
β ∈ [0, n]. As in the previous section, a two stage process will be used. In the first stage, a
linear extension is drawn nonuniformly from the set of linear extensions. Any linear extension
where σ(i) − σhome > β has zero chance of being drawn. Any i where σ(i) − σhome = ⌈β⌉
contributes a penalty factor of 1 + β − ⌈β⌉ to the probability of S(i). To be precise, let
P(S = σ) = w(σ)/Z(β), where

w(σ) =
∏

i∈[n]
((1 + β − ⌈β⌉)1(σ(i)− σhome(i) = ⌈β⌉) + 1(σ(i)− σhome < ⌈β⌉)), (1)

and Z(β) =
∑

σ w(σ).
For instance, suppose σhome = (1, 2, 3, 4), and β = 1.3. The permutation σ1 = (3, 2, 4, 1)

(if this was a valid linear extension) would have probability .3/Z(1.3) of occurring. Note the
first component is 2 = ⌈1.3⌉ to the right of its home position, the second component is only
1 of the right of its home position, and the last two components are to the left of their home
position. The permutation σ2 = (3, 4, 1, 2) would have probability .32/Z(1.3) of occurring,
and so on.

Once the linear extension S has been drawn, draw X as follows. For each i, let X(i) ∼
Unif((S(i)−1, S(i)] if S(i)−σhome < ⌈β⌉, otherwise letX(i) ∼ Unif((S(i)−1, S(i)+β−⌈β⌉]).
This is set up so that the normalizing constants in the uniform forX(i) cancels the 1+β−⌈β⌉
factor in the weight of σ if σ(i)− σhome = ⌈β⌉. Therefore X is a uniform choice over A(β).

5 Sampling from the continuous embedding

For the continuous embedding to be useful for TPA, it must be possible to sample from the
set of linear extensions with weights in (1). Once the linear extension has been created,
sampling the continuous version is easy.

To sample from the set of weighted linear extensions, first build a Markov chain whose
stationary distribution matches the target distribution. This is done by using the Metropolis-
Hastings approach with a proposal chain that chooses two adjacent elements uniformly at
random and transposes them (if such a transposition obeys the partial order) with probability
1/2. This is encoded in algorithm 5.1. In line 1, Unif denotes the uniform distribution, and
Bern the Bernoulli distribution.

From this chain, it is possible to build a method for obtaining samples exactly from the
target distribution. The method of coupling from the past (CFTP) was developed by Propp
and Wilson [10] to draw samples exactly from the stationary distribution of Markov chains.
For this problem, an extension called non-Markovian CFTP [6] is needed.
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Algorithm 5.1 ChainStep(σ)

Input: current linear extension Markov chain state σ
Output: next linear extension Markov chain state σ
1: draw i← Unif({1, . . . , n− 1}), C1 ← Bern(1/2), C2 ← Bern(1 + β − ⌈β⌉)
2: if C1 = 1 and not σ(i) � σ(i+ 1) then
3: if σ(i)− σhome(i) 6= ⌈β⌉ − 1 or C2 = 1 then

4: a← σ(i+ 1), σ(i+ 1)← σ(i), σ(i)← a
5: end if

6: end if

The method works as follows. First, a bounding chain [5] is constructed for the chain in
question. A bounding chain is an auxiliary chain on the set of subsets of the original state
space. That is, Ωbound = 2Ω, where Ω is the state space of the original chain. Moreover,
there is a coupling between the original chain {σt} and the bounding chain {St} such that
σt evolves according to the kernel of the original bounding chain, and σt ∈ St → σt+1 ∈ St+1.

For us, the state of the bounding chain is indexed by a vector B ∈ {1, . . . , n, θ}n. Let

S(B) = {σ : (∀i)((B(j) = i) ∧ (σ(j′) = i)⇒ j′ ≤ j)}

For instance, if B(3) = 4, then σ ∈ S(B) requires that σ(1) = 4 or σ(2) = 4 or σ(3) = 4. In
this setup θ is a special symbol: if B(i) = θ, then there is no restriction on σ whatsoever.
To visualize what is happening with the state and bounding state, it will be useful to have
a pictorial representation. For instance, if σ = (4, 2, 3, 1) and B = (θ, 4, 3, θ) this can be
represented by:

4 |θ 2 |4 3 |3 1 |θ.
Note that the vertical line with subscript i (|i) always appears to the right of the underlined
i. This is how the bounding state works, it keeps track of the right most position of the item
in the underlying state.

This bounding state has two other properties needed to use non-Markovian CFTP. First,
there are several states that contains everything, for example B = (θ, . . . , θ, σhome(1)). Sec-
ond, when all the θ values are gone, there is exactly one underlying state. That state must be
equal to B. For instance, if B = (4, 3, 1, 2), then from the definition of S, the only possible
underlying state is σ = (4, 3, 1, 2).

We are now ready to state the procedure for updating the current state and the bounding
state simultaneously. This operates as in Algorithm 5.2. Note that if the inputs to the
Algorithm have i ∼ Unif({1, 2, . . . , n}) and C1 ∼ Bern(1/2), then the state σ is updated
using the same probabilities as the previous chain step. The key difference between how σ
and B are updated is that if σ(i) = B(i+1), then B is updated using C3 = 1−C1, otherwise
C3 = C1. In any case, since C1 ∼ Bern(1/2), C3 ∼ Bern(1/2) as well.

Note that σ is being updated as in Algorithm 5.1. The only different is the bounding
state update. Our main result is:

Theorem 1. If σ ∈ S(B), then running one step of Algorithm 5.2 leaves σ ∈ S(B).

Proof. Since only σ(i), σ(i+1), B(i) and B(i+1) are changing, they are the only states that
need be considered. There are several cases. To describe the cases more succinctly, use ∗ to

6



Algorithm 5.2 BoundingChainStep(σ,B, i, C1, C2)

Input: current state and bounding state (σ,B)
Output: next state and bounding state (σ,B)
1: C3 ← (1− C1)1(σ(i) = B(i+ 1)) + C11(σ(i) 6= B(i+ 1))
2: if C1 = 1 and not σ(i) � σ(j) then
3: if σ(i)− σhome(i) 6= ⌈β⌉ − 1 or C2 = 1 then

4: a← σ(i+ 1), σ(i+ 1)← σ(i), σ(i)← a
5: end if

6: end if

7: if C3 = 1 and not B(i) � B(j) then
8: if B(i)− σhome(i) 6= ⌈β⌉ − 1 or C2 = 1 then

9: a← B(i+ 1), B(i+ 1)← B(i), B(i)← a
10: end if

11: end if

12: if B(n) = θ then

13: p← the number of i such that B(i) 6= θ
14: B(n)← σhome(p+ 1)
15: end if

denote a value of σ(i) or σ(i + 1) that is neither B(i) nor B(i + 1). For instance, the case
* |a b |b indicates B(i) = a, B(i + 1) = b, σ(i + 1) = b, and σ(i) is neither a nor b. These
cases are given in the table below.

First note if {σ(i), σ(i+ 1)} ∩ {B(i), B(i + 1)} = ∅, then if σ(i′) = B(i) then i′ < i and
switching B(i) and B(i + 1) leaves B(i) bounded. Similarly, if σ(i′) = B(i + 1) then i′ < i
and switching B(i) and B(i+ 1) leaves B(i+ 1) bounded. Hence the only interesting cases
are when the sets {σ(i), σ(i+1)} and {B(i), B(i+1)} overlap. These cases are given below.

Case 1: a |a * |θ. For a to move right, it must be true that C1 = 1 and it must be false
that a � σ(i + 1). If a− σhome(i) = ⌈β⌉ then it is also necessary that C2 = 1. Under these
conditions, the |a also always moves right, so continues to bound a.

Case 2: a |a * |b. That b is bounded just follows from the fact that if σ(i′) = b, then
i′ < i. This further implies that it is not true that a � b. Hence (just as in Case 1) if a
swaps, then |a must swap as well.

Case 3: a |a b |b. Since C1 = C3 and the swap for a and b and |a and |b are determined
in the same fashion, either they both swap or neither pair swaps.

Case 4: a |θ * |a. For a to move right, it must be true that C1 = 1, which makes C3 = 0.
Hence the |a continues to bound a.

Case 5: a |b * |a. Same as Case 4.
Case 6: * |θ b |b. There are three conditions under which b stays in location i + 1: 1)

C1 = 0. 2) σ(i) � b. 3) σ(i)−σhome(i) = ⌈β⌉ and C2 = 0. If 1) occurs, then |b does not move
either. It turns out that 2) cannot occur. To see this, let c be any element that precedes b
in the partial order. Then it also precedes b in the home permutation σhome. That means
that in lines 12 through 15, |c was introduced before the |b bound was introduced. Since the
|c bound is always to the left of the |b bound, and is not in position i, it must be somewhere
to the left of i. Hence c is in a location to the left of i, that is, σ(i′) = c → i′ < i. Since c
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was an arbitrary element that precedes b, situation 2) never occurs.
Finally, if 3) occurs, then |b also does not move. Hence the only times b stays put, |b will

also stay, and lines 2 through 11 maintain the property that σ is bounded by B.
The last lines of the algorithm (12 through 15) deal with the situation where B(n) = θ.

In this case switching B(n) to any nonzero number will not hurt the bounding property.
Therefore we switch to the “next” number in line, which is found by using the values in
order σhome.

Hence if σ is bounded by B, it will still be bounded after taking one step in the bounding
chain step. With this established, samples from the target distribution can be generated as
in Algorithm 5.3 [6, 10] using non-Markovian CFTP.

Algorithm 5.3 Generate(t)

Input: t number of steps to use to generate a sample
Output: σ drawn from the weighted distribution
1: σ ← σhome, B ← (θ, . . . , θ, σhome(1))
2: for j from 1 to t do
3: draw i(j)← Unif({1, . . . , n− 1}), C1(j)← Bern(1/2),

C2(j)← Bern(1 + β − ⌈β⌉)
4: (σ,B)← BoundingChainStep(σ,B, i(j), C1(j), C2(j))
5: end for

6: if for all i, B(i) 6= θ then

7: σ ← B
8: else

9: σ ← Generate(2t)
10: for j from 1 to t do
11: (σ,B)← BoundingChainStep(σ,B, i(j), C1(j), C2(j))
12: end for

13: end if

6 Analysis

In this section we prove several results concerning the running time of the procedure outlined
in the previous section.

Theorem 2. The non-Markovian coupling from the past in Algorithm 5.3 requires an ex-

pected number of random bits bounded by 4.3n3(lnn)(⌈log2 n⌉+ 3) and a number of compar-

isons bounded by 8.6n3 lnn.

Theorem 3. For ǫ ≤ 1, the two-phase TPA approach outlined at the end of Section 2

generates output L̂2 such that

P((1 + ǫ)−1 ≤ L̂2/L(P ) ≤ 1 + ǫ) ≥ 1− δ.

8



Theorem 4. The expected number of random bits needed to approximate L(P ) to within a

factor of 1 + ǫ with probability at least 1− δ is bounded above by

4.3n3(lnn)(⌈log2 n⌉+3)[2(A+1) ln(2/δ)+(A+1)(A+3
√
2A+2)(ln(1+ǫ)2−ln(1+ǫ)3) ln(4/δ)].

Proof of Theorem 2. Lemma 10 of [6] showed that when there is no β parameter, the ex-
pected number of steps taken by non-Markovian CFTP was bounded above by 4.3n3 lnn.

So the question is: once the β parameter falls below n, does the bound still hold? The
bound was derived by considering how long it takes for the |θ values in the bounding state
to disappear. Each time a |θ reaches position n, it is removed and replaced by something of
the form |a. When all the |θ disappear, the process in Algorithm 5.3 terminates.

When there is no β, the probabilities that a particular |θ bound moves to the left or the
right are equal: both 1/(2n). (This does not apply when the bound is at position 1, in which
case the bound cannot move to the left.) The result in [6] is really a bound on the number
of steps in a simple random walk necessary for the |θ bounds to all reach state n.

Now suppose that β ∈ (0, n). The probability that a |θ bound moves to the right is still
1/(2n), but now consider when the state is of the form . . . |a |θ . . .. For |θ to move left
the |a has to move right, and this could occur with probability (1 + β − ⌈β⌉)/(2n). That is,
with β ∈ (0, n), the chance that the |θ moves left can be below 1/(2n).

This can only reduce the number of moves necessary for the |θ bounds to reach the right
hand side! That is, the random variable that is the number of steps needed for all the |θ
bounds to reach position n and disappear is dominated by the same random variable for
β = n. Hence the bound obtained by Lemma 10 of [6] still holds.

Now to the random bits. Drawing a uniform number from {1, . . . , n} takes ⌈log2 n⌉ bits,
while drawing from {0, 1} for coin C1 takes one bit. The expected number of bits needed to
draw a Bernoulli random variable with parameter not equal to 1/2 is two, and so the total
bits needed for one step of the process (in expectation) is ⌈log2 n⌉ + 3. Each step in the
bounding chain and state uses at most two comparisons.

It will be helpful in proving Theorem 3 to have the following bound on the tail of the
Poisson distribution.

Lemma 1. For X ∼ Pois(µ) and a ≤ µ, P(X ≥ µ + a) ≤ exp(−(1/2)a2/µ + (1/2)a3/µ2)
and for a ≤ µ, P(X ≤ µ− a) ≤ exp(−a2/(2µ)).

Proof. These follow from Chernoff Bounds which are essentially Markov’s inequality applied
to the moment generating function of the random variable. The moment generating function
of X is E[exp(tX)] = exp(µ(et − 1)). So for a > 0

P(X ≥ µ+ a) = P(exp(tX) ≥ exp(t(µ+ a)) ≤ exp(µ(et − 1))

exp(t(µ+ a))
.

Setting t = ln(1 + a/µ) minimizes the right hand side, and yields:

P(X ≥ µ+ a) ≤ exp(a− (µ+ a) ln(1 + a/µ)).
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For a ≤ µ, − ln(1 + a/µ) ≤ −a/µ + (1/2)a2/µ2, so P(X ≥ µ + a) ≤ exp(−(1/2)a2/µ +
(1/2)a3/µ2) as desired. For the second result:

P(X ≤ µ− a) = P(exp(−tX) ≥ exp(−t(µ − a)) ≤ exp(µ(e−t − 1))

exp(−t(µ− a))
.

Setting t = − ln(1− a/µ) then yields the next result.
For a ≤ µ, − ln(1− a/µ) ≤ a/µ+ (1/2)(a/µ)2. So

−a− (µ−a) ln(1−a/µ) ≤ −a+(µ−a)((a/µ)+(1/2)(a/µ)) = −(1/2)(a2/µ)− (1/2)(a3/µ2).

The right hand side is at most −(1/2)a2/µ, which completes the proof.

Proof of Theorem 3. Consider the first phase of the algorithm, where TPA is run with r1 =

2 ln(2/δ). Consider the probability of the event {Â1 +
√

Â1 + 2 < A}. This event cannot
happen if A ≤ 2. If A > 2, then this event occurs when Â1 < A− (3/2)−

√

A− 7/4. Since

r1Â1 ∼ Pois(rA), Lemma 1 can be used to say that

P(r1Â1 < r1A− r1(3/2 +
√

A− 7/4)) ≤ exp(−(1/2)(r1(3/2 +
√

A− 7/4))2/(r1A)
2

≤ exp(−(1/2)r1(9/4 + A− 7/4)/A2)

≤ exp(−(1/2)r1/A)
≤ 2/δ.

In other words, with probability at least 1− δ/2, Â1 +
√

Â1 + 2 ≥ A.
Now consider the second phase. To simplify the notation, let ǫ′ = ln(1 + ǫ), and Â2 =

exp(L̂2) where L̂2 is the output from the second phase. Then from the first phase r2 ≥
A(ǫ′2 − ǫ′3)−1 ln(4/δ) with probability at least 1− δ/2.

So from Lemma 1,

P(r2Â2 ≥ r2A+ r2ǫ
′) ≤ exp(−(1/2)(r2ǫ′)2/(r2A) + (1/2)(r2ǫ

′)3/(r2A)
2)

= exp(−(1/2)r2ǫ′2/A+ (1/2)r2ǫ
′3/A2)

≤ exp(− ln(4/δ)).

A similar bound holds for the left tail:

P(r2Â2 ≤ r2A− r2ǫ
′) ≤ exp(−(1/2)r22ǫ′2/(r2A)) ≤ δ/4.

Therefore, the total probability that failure occurs in either the first phase or the second is
at most δ/2 + δ/4 + δ/4 = δ. If r2Â2 is within additive error r2ǫ

′ = r2 ln(1 + ǫ) of r2A, then
L̂2 = exp(Â2/r) is within a factor of 1 + ǫ of exp(A), showing the result.

To bound the expected running time, the following loose bound on the expected value of
the square root of a Poisson random variable is useful.

Lemma 2. For X ∼ Pois(µ), E[
√
X ] ≤ 3

√
2µ.
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Proof. First note E[
√
X ] = E[

√
X1(X ≤ 2µ)] + E[

√
X1(X > 2µ)]. Then E[

√
X1(X ≤

2µ)] ≤ √2µ, while the second term is:

E[
√
X1(X > 2µ)] =

∞
∑

i=⌊2√µ⌋+1

√
iP(X = i).

The ratio between successive terms in this series is:
√
i+ 1 exp(−µ)(µ)i+1/(i+ 1)!√

i exp(−µ)(µ)i/(i)!
=

µ
√

i(i+ 1)
≤ 1/2.

The first term in the series is at most
√
2µ, so the series sums to at most 2

√
2µ.

Proof of Theorem 4. From Theorem 2, the expected number of bits per sample is bounded
by 4.3n3(lnn)(⌈log2 n⌉ + 3) and does not depend on the sample. Hence the total number
of expected bits can be bounded by the expected number of bits per samples times the
expected number of samples. The first phase of TPA uses r1 = 2 ln(2/δ) runs, each with an
expectation of A+1 samples per run to make r1(A+1) expected samples. The second phase

uses r2 = (Â1 +
√

Â1 + 2)[ln(1 + ǫ)2 − ln(1 + ǫ)3] ln(4/δ) runs, where r1Â1 ∼ Pois(r1A). So
from Lemma 2,

E[

√

Â1] = r
−1/2
1 E[

√

r1A] ≤ r
−1/2
1 3

√

2r1A = 3
√
2A.

Using A = lnL(P ) and then combining these factors yields the result.

7 Conclusion

TPA is a sharp improvement on the self-reducibility method of Jerrum et al. for estimating
the size of a set. At first glance, the continuity requirement of TPA precludes its use for
discrete problems such as linear extensions. Fortunately, discrete problems can usually be
embedded in a continuous space to make the use of TPA possible. Here we have shown how
to accomplish this task in such a way that the time needed to take samples is the same as for
uniform generation. The result is an algorithm that is much faster at estimating the number
of linear extensions than previously known algorithms.
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